小分子
生物分子
共价键
蛋白质数据库
分子
核酸
蛋白质数据库
化学
蛋白质结构
生物系统
纳米技术
材料科学
立体化学
生物
生物化学
有机化学
作者
Rohith Krishna,Jue Wang,Woody Ahern,Pascal Sturmfels,Preetham Venkatesh,Indrek Kalvet,Gyu Rie Lee,Felix S. Morey-Burrows,Ivan Anishchenko,Ian R. Humphreys,R. Kathryn McHugh,Dionne Vafeados,Xinting Li,George A. Sutherland,Andrew Hitchcock,C. Neil Hunter,Minkyung Baek,Frank DiMaio,David Baker
标识
DOI:10.1101/2023.10.09.561603
摘要
Abstract Although AlphaFold2 (AF2) and RoseTTAFold (RF) have transformed structural biology by enabling high-accuracy protein structure modeling, they are unable to model covalent modifications or interactions with small molecules and other non-protein molecules that can play key roles in biological function. Here, we describe RoseTTAFold All-Atom (RFAA), a deep network capable of modeling full biological assemblies containing proteins, nucleic acids, small molecules, metals, and covalent modifications given the sequences of the polymers and the atomic bonded geometry of the small molecules and covalent modifications. Following training on structures of full biological assemblies in the Protein Data Bank (PDB), RFAA has comparable protein structure prediction accuracy to AF2, excellent performance in CAMEO for flexible backbone small molecule docking, and reasonable prediction accuracy for protein covalent modifications and assemblies of proteins with multiple nucleic acid chains and small molecules which, to our knowledge, no existing method can model simultaneously. By fine-tuning on diffusive denoising tasks, we develop RFdiffusion All-Atom (RFdiffusionAA ) , which generates binding pockets by directly building protein structures around small molecules and other non-protein molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we design and experimentally validate proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and optically active bilin molecules with potential for expanding the range of wavelengths captured by photosynthesis. We anticipate that RFAA and RFdiffusionAA will be widely useful for modeling and designing complex biomolecular systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI