“Hi, how can i help you?”: embracing artificial intelligence in kidney research

肾脏疾病 人工智能 肾病科 机器学习 大数据 计算机科学 疾病 急性肾损伤 数据科学 医学 重症监护医学 生物信息学 病理 数据挖掘 内科学 生物
作者
Anita T. Layton
出处
期刊:American Journal of Physiology-renal Physiology [American Physiological Society]
卷期号:325 (4): F395-F406 被引量:1
标识
DOI:10.1152/ajprenal.00177.2023
摘要

In recent years, biology and precision medicine have benefited from major advancements in generating large-scale molecular and biomedical datasets and in analyzing those data using advanced machine learning algorithms. Machine learning applications in kidney physiology and pathophysiology include segmenting kidney structures from imaging data and predicting conditions like acute kidney injury or chronic kidney disease using electronic health records. Despite the potential of machine learning to revolutionize nephrology by providing innovative diagnostic and therapeutic tools, its adoption in kidney research has been slower than in other organ systems. Several factors contribute to this underutilization. The complexity of the kidney as an organ, with intricate physiology and specialized cell populations, makes it challenging to extrapolate bulk omics data to specific processes. In addition, kidney diseases often present with overlapping manifestations and morphological changes, making diagnosis and treatment complex. Moreover, kidney diseases receive less funding compared with other pathologies, leading to lower awareness and limited public-private partnerships. To promote the use of machine learning in kidney research, this review provides an introduction to machine learning and reviews its notable applications in renal research, such as morphological analysis, omics data examination, and disease diagnosis and prognosis. Challenges and limitations associated with data-driven predictive techniques are also discussed. The goal of this review is to raise awareness and encourage the kidney research community to embrace machine learning as a powerful tool that can drive advancements in understanding kidney diseases and improving patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助洛花羽落采纳,获得10
刚刚
柒柒完成签到,获得积分10
刚刚
Jinyi发布了新的文献求助10
刚刚
WOLF完成签到,获得积分10
1秒前
Alvin发布了新的文献求助10
2秒前
2秒前
2秒前
layla四月发布了新的文献求助10
3秒前
3秒前
JamesPei应助eve采纳,获得10
4秒前
大力的西装完成签到,获得积分10
4秒前
5秒前
8秒前
8秒前
9秒前
隐形盼海发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
caozhi发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
NexusExplorer应助星星子采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
tutu完成签到,获得积分10
13秒前
13秒前
14秒前
流年发布了新的文献求助10
14秒前
研友_VZG7GZ应助LILI采纳,获得10
14秒前
14秒前
14秒前
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799545
关于积分的说明 7835454
捐赠科研通 2456868
什么是DOI,文献DOI怎么找? 1307446
科研通“疑难数据库(出版商)”最低求助积分说明 628207
版权声明 601655