材料科学
凝聚态物理
六方氮化硼
自旋(空气动力学)
氮化硼
自旋极化
电子
分子物理学
纳米技术
物理
石墨烯
量子力学
热力学
作者
Alrik Durand,T. Clua-Provost,Florentin Fabre,Pawan Kumar,Jiahan Li,James H. Edgar,Péter Udvarhelyi,Ádám Gali,X. Marié,Cédric Robert,Jean‐Michel Gérard,Bernard Gil,Guillaume Cassabois,V. Jacques
标识
DOI:10.1103/physrevlett.131.116902
摘要
Optically active spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of two-dimensional quantum sensing units offering optimal proximity to the sample being probed. In this Letter, we first demonstrate that the electron spin resonance frequencies of boron vacancy centers (${V}_{\mathrm{B}}^{\ensuremath{-}}$) can be detected optically in the limit of few-atomic-layer thick hBN flakes despite the nanoscale proximity of the crystal surface that often leads to a degradation of the stability of solid-state spin defects. We then analyze the variations of the electronic spin properties of ${V}_{\mathrm{B}}^{\ensuremath{-}}$ centers with the hBN thickness with a focus on (i) the zero-field splitting parameters, (ii) the optically induced spin polarization rate and (iii) the longitudinal spin relaxation time. This Letter provides important insights into the properties of ${V}_{\mathrm{B}}^{\ensuremath{-}}$ centers embedded in ultrathin hBN flakes, which are valuable for future developments of foil-based quantum sensing technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI