DDFN: Deblurring Dictionary Encoding Fusion Network for Infrared and Visible Image Object Detection

计算机科学 人工智能 去模糊 计算机视觉 模式识别(心理学) 目标检测 红外线的 编码(内存) 特征提取 特征(语言学) 图像处理 图像(数学) 图像复原 光学 物理 哲学 语言学
作者
Jiawei Lai,Jie Geng,Xinyang Deng,Wen Jiang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2023.3311176
摘要

Both infrared and visible images have advantages for object detection, since infrared images can capture thermal characteristics of objects and visible images can provide high spatial resolution and clear texture details of objects. Combining infrared and visible images for object detection has many advantages, but how to fully utilize the inherent characteristics of these two data is still a challenging issue. To address this issue, a deblurring dictionary encoding fusion network (DDFN) is proposed for infrared and visible image object detection. Firstly, a dual-stream feature extraction backbone is structured, which aims to learn features based on the characteristics of different modalities. Then, pooling operations are applied to filter out key information and reduce the complexity of the network. Afterwards, a fuzzy compensation module is proposed, which aims to minimize the information loss of pooling process. Finally, a dictionary encoding fusion module is proposed to robustly excavate potential interactions between infrared and visible images, which can obtain fusion features with aggregating the local information of infrared features and the long-term dependent information of visible features. The proposed DDFN exhibits excellent performance on two benchmark bimodal datasets and shows superior capabilities in object detection of infrared-visible images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LTC发布了新的文献求助10
1秒前
skyleon发布了新的文献求助10
2秒前
vision0000发布了新的文献求助10
4秒前
666应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
研友_ZbM2qn应助科研通管家采纳,获得20
4秒前
皓月孤烟应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
良辰应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
良辰应助科研通管家采纳,获得10
5秒前
嘤嘤怪应助科研通管家采纳,获得10
5秒前
空白完成签到,获得积分10
5秒前
所所应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
MU完成签到,获得积分10
6秒前
科研狗111发布了新的文献求助10
6秒前
6秒前
勤劳的yt发布了新的文献求助10
7秒前
科研通AI2S应助AMAME12采纳,获得10
9秒前
对方正在看文献完成签到,获得积分10
9秒前
闪闪完成签到,获得积分10
9秒前
脑洞疼应助哪位采纳,获得10
10秒前
凡凡完成签到,获得积分20
11秒前
巫马荧完成签到,获得积分10
11秒前
13秒前
14秒前
ZG发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310539
求助须知:如何正确求助?哪些是违规求助? 2943392
关于积分的说明 8514589
捐赠科研通 2618688
什么是DOI,文献DOI怎么找? 1431326
科研通“疑难数据库(出版商)”最低求助积分说明 664442
邀请新用户注册赠送积分活动 649626