A fast compact difference scheme with unequal time-steps for the tempered time-fractional Black–Scholes model

数学 分数阶微积分 应用数学 趋同(经济学) 操作员(生物学) 布莱克-斯科尔斯模型 订单(交换) 财务 生物化学 转录因子 波动性(金融) 基因 计量经济学 经济增长 抑制因子 经济 化学
作者
Jinfeng Zhou,Xian-Ming Gu,Yongliang Zhao,Hu Li
出处
期刊:International Journal of Computer Mathematics [Informa]
卷期号:: 1-23 被引量:3
标识
DOI:10.1080/00207160.2023.2254412
摘要

AbstractThe Black–Scholes (B–S) equation has been recently extended as a kind of tempered time-fractional B–S equations, which becomes an interesting mathematical model in option pricing. In this study, we provide a fast numerical method to approximate the solution of the tempered time-fractional B–S model. To achieve high-order accuracy in space and overcome the weak initial singularity of exact solution, we combine the compact difference operator with L1-type approximation under nonuniform time steps to yield the numerical scheme. The convergence of the proposed difference scheme is proved to be unconditionally stable. Moreover, the kernel function in the tempered Caputo fractional derivative is approximated by sum-of-exponentials, which leads to a fast unconditionally stable compact difference method that reduces the computational cost. Finally, numerical results demonstrate the effectiveness of the proposed methods.Keywords: Tempered time-fractional B–S modelnonuniform time stepsexponential transformationcompact difference schemeweak regularity2020 AMS Subject Classifications: 65M0665M5026A3391G20 AcknowledgmentsThe authors would like to thank anonymous reviewers, Dr. Can Li and Dr. Jinye Shen whose insightful comments and careful proof-checks helped to improve the current paper. X.-M. Gu also thanks Prof. Dongling Wang for helpful discussions during his visiting to Xiangtan University.Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Due to two known functions ϕ(τ) and φ(τ), it is easy to compute the term 0CDτα,λz(x,τ) in the analytical (or numerical) manner.2 See some related experimental results in our arXiv preprint https://arxiv.org/abs/2303.10592v2.3 Evaluation of the M-L function with 2 parameters: https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function.Additional informationFundingThis work was supported by the Applied Basic Research Program of Sichuan Province [grant number 2020YJ0007] and the Sichuan Science and Technology Program [grant number 2022ZYD0006 and grant number 2023NSFSC1326].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
culiucabbage发布了新的文献求助10
刚刚
ppyyg完成签到,获得积分10
1秒前
1秒前
BowieHuang应助ru采纳,获得10
1秒前
纳米完成签到,获得积分10
2秒前
香蕉觅云应助林琳采纳,获得10
2秒前
不敢自称科研人完成签到,获得积分10
3秒前
3秒前
快乐寄风发布了新的文献求助10
6秒前
小二郎应助NPC采纳,获得10
6秒前
gone完成签到,获得积分10
7秒前
8秒前
害羞的振家完成签到,获得积分10
8秒前
可悲的科研狗完成签到,获得积分10
9秒前
pcm完成签到 ,获得积分10
9秒前
无花果应助王小敏敏儿采纳,获得10
9秒前
9秒前
所所应助看文献的韩章浅采纳,获得10
10秒前
11秒前
12秒前
nana发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
FashionBoy应助sff采纳,获得10
16秒前
17秒前
18秒前
Qiao发布了新的文献求助10
18秒前
蓝橙完成签到,获得积分10
19秒前
CodeCraft应助qq158014169采纳,获得10
19秒前
小化发布了新的文献求助10
20秒前
领导范儿应助灿灿采纳,获得30
21秒前
Mic应助ning采纳,获得10
21秒前
21秒前
22秒前
无私鹰完成签到,获得积分10
22秒前
充电宝应助nana采纳,获得10
22秒前
22秒前
深情安青应助清脆映梦采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487