Multi-scroll and coexisting attractors in a Hopfield neural network under electromagnetic induction and external stimuli

吸引子 Hopfield网络 计算机科学 人工神经网络 理论(学习稳定性) 混乱的 记忆电阻器 生物神经网络 拓扑(电路) 人工智能 数学 物理 机器学习 数学分析 量子力学 组合数学
作者
D. Vignesh,Jun Ma,Santo Banerjee
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:564: 126961-126961 被引量:18
标识
DOI:10.1016/j.neucom.2023.126961
摘要

The application of external stimuli to biological neurons is a valuable tool for investigating neuronal properties, understanding neural circuitry, and developing therapeutic interventions for neurological disorders. In this article, we propose a discrete fractional Hopfield neural network model consisting of four neurons to explore the influence of external stimuli in the presence of electromagnetic induction and radiation. To incorporate the electromagnetic induction between connected neurons, we construct and employ a discrete fractional sine memristor. Additionally, we introduce a multi-level pulse function to the sine memristor element to examine the chaotic dynamics of the neural network model. The qualitative behavior of the network model is demonstrated through stability analysis and bifurcation diagrams showcasing chaos. The study also focuses on understanding the coexisting behavior of the neural network model in the presence and absence of external stimuli. Moreover, we investigate the generation of multi-scroll attractors by varying the level of the pulse function, which is introduced to electromagnetic induction. Numerical simulations reveal that increasing the level of the multi-pulse function doubles the number of scrolls in the attractors when external stimuli are present. The findings presented in this article contribute to our understanding of discrete fractional memristors and shed light on the dynamical behavior of neurons and their electrical activity in the brain. Innovation within the discrete fractional-order Hopfield neural networks realm entails the creation and utilization of fresh ideas, methodologies, and strategies that harness fractional-order dynamics to confront diverse hurdles and enhance the effectiveness of Hopfield networks. Discrete fractional-order Hopfield neural networks have the capacity to propel an array of applications forward, spanning artificial intelligence, machine learning, control systems, and optimization, showcasing their potential for substantial progress in various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuy发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
Jun关闭了Jun文献求助
3秒前
星星发布了新的文献求助10
4秒前
6秒前
射天狼发布了新的文献求助10
6秒前
6秒前
6秒前
zebra8848完成签到,获得积分10
6秒前
7秒前
深情安青应助wsj采纳,获得10
7秒前
7秒前
sxy发布了新的文献求助10
8秒前
蔡从安发布了新的文献求助10
9秒前
10秒前
柔弱云朵完成签到,获得积分10
11秒前
11秒前
11秒前
xxddw发布了新的文献求助10
11秒前
Owen应助小晓采纳,获得10
12秒前
13秒前
13秒前
13秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
肖雪依完成签到,获得积分10
21秒前
23秒前
Tink完成签到,获得积分0
23秒前
麦子发布了新的文献求助10
26秒前
星辰大海应助自信鑫鹏采纳,获得10
27秒前
铮铮完成签到,获得积分10
27秒前
Leeie03发布了新的文献求助10
27秒前
29秒前
思源应助wuy采纳,获得10
31秒前
112我的完成签到,获得积分10
32秒前
CodeCraft应助牛文文采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174