Multi-scroll and coexisting attractors in a Hopfield neural network under electromagnetic induction and external stimuli

吸引子 Hopfield网络 计算机科学 人工神经网络 理论(学习稳定性) 混乱的 记忆电阻器 生物神经网络 拓扑(电路) 人工智能 数学 物理 机器学习 数学分析 量子力学 组合数学
作者
D. Vignesh,Jun Ma,Santo Banerjee
出处
期刊:Neurocomputing [Elsevier]
卷期号:564: 126961-126961 被引量:18
标识
DOI:10.1016/j.neucom.2023.126961
摘要

The application of external stimuli to biological neurons is a valuable tool for investigating neuronal properties, understanding neural circuitry, and developing therapeutic interventions for neurological disorders. In this article, we propose a discrete fractional Hopfield neural network model consisting of four neurons to explore the influence of external stimuli in the presence of electromagnetic induction and radiation. To incorporate the electromagnetic induction between connected neurons, we construct and employ a discrete fractional sine memristor. Additionally, we introduce a multi-level pulse function to the sine memristor element to examine the chaotic dynamics of the neural network model. The qualitative behavior of the network model is demonstrated through stability analysis and bifurcation diagrams showcasing chaos. The study also focuses on understanding the coexisting behavior of the neural network model in the presence and absence of external stimuli. Moreover, we investigate the generation of multi-scroll attractors by varying the level of the pulse function, which is introduced to electromagnetic induction. Numerical simulations reveal that increasing the level of the multi-pulse function doubles the number of scrolls in the attractors when external stimuli are present. The findings presented in this article contribute to our understanding of discrete fractional memristors and shed light on the dynamical behavior of neurons and their electrical activity in the brain. Innovation within the discrete fractional-order Hopfield neural networks realm entails the creation and utilization of fresh ideas, methodologies, and strategies that harness fractional-order dynamics to confront diverse hurdles and enhance the effectiveness of Hopfield networks. Discrete fractional-order Hopfield neural networks have the capacity to propel an array of applications forward, spanning artificial intelligence, machine learning, control systems, and optimization, showcasing their potential for substantial progress in various domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助小巧冷菱采纳,获得50
刚刚
1秒前
1秒前
vane发布了新的文献求助10
1秒前
刘明升发布了新的文献求助10
1秒前
芭温行由发布了新的文献求助10
2秒前
3秒前
活泼学生完成签到,获得积分10
3秒前
安平发布了新的文献求助10
3秒前
思源应助君无邪采纳,获得10
3秒前
这瓜不卖发布了新的文献求助10
3秒前
4秒前
堇瓜完成签到 ,获得积分10
4秒前
4秒前
Vegetable_Dog发布了新的文献求助10
5秒前
5秒前
英姑应助爱撒娇的朋友采纳,获得10
6秒前
俊秀的笑槐发布了新的文献求助100
6秒前
6秒前
6秒前
Suraim完成签到,获得积分10
7秒前
7秒前
Suc完成签到,获得积分10
7秒前
7秒前
ce完成签到,获得积分10
7秒前
化学民工发布了新的文献求助10
8秒前
李健应助Genius采纳,获得10
8秒前
8秒前
小葛发布了新的文献求助10
8秒前
Liuxiaoliu完成签到 ,获得积分10
9秒前
铁观音完成签到,获得积分10
9秒前
9秒前
活泼学生发布了新的文献求助10
9秒前
无极微光应助Kinspact采纳,获得20
10秒前
10秒前
脑洞疼应助vane采纳,获得30
10秒前
木易北北完成签到,获得积分20
11秒前
书双发布了新的文献求助10
11秒前
12秒前
北窗发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906