Multi-scroll and coexisting attractors in a Hopfield neural network under electromagnetic induction and external stimuli

吸引子 Hopfield网络 计算机科学 人工神经网络 理论(学习稳定性) 混乱的 记忆电阻器 生物神经网络 拓扑(电路) 人工智能 数学 物理 机器学习 数学分析 量子力学 组合数学
作者
D. Vignesh,Jun Ma,Santo Banerjee
出处
期刊:Neurocomputing [Elsevier]
卷期号:564: 126961-126961 被引量:18
标识
DOI:10.1016/j.neucom.2023.126961
摘要

The application of external stimuli to biological neurons is a valuable tool for investigating neuronal properties, understanding neural circuitry, and developing therapeutic interventions for neurological disorders. In this article, we propose a discrete fractional Hopfield neural network model consisting of four neurons to explore the influence of external stimuli in the presence of electromagnetic induction and radiation. To incorporate the electromagnetic induction between connected neurons, we construct and employ a discrete fractional sine memristor. Additionally, we introduce a multi-level pulse function to the sine memristor element to examine the chaotic dynamics of the neural network model. The qualitative behavior of the network model is demonstrated through stability analysis and bifurcation diagrams showcasing chaos. The study also focuses on understanding the coexisting behavior of the neural network model in the presence and absence of external stimuli. Moreover, we investigate the generation of multi-scroll attractors by varying the level of the pulse function, which is introduced to electromagnetic induction. Numerical simulations reveal that increasing the level of the multi-pulse function doubles the number of scrolls in the attractors when external stimuli are present. The findings presented in this article contribute to our understanding of discrete fractional memristors and shed light on the dynamical behavior of neurons and their electrical activity in the brain. Innovation within the discrete fractional-order Hopfield neural networks realm entails the creation and utilization of fresh ideas, methodologies, and strategies that harness fractional-order dynamics to confront diverse hurdles and enhance the effectiveness of Hopfield networks. Discrete fractional-order Hopfield neural networks have the capacity to propel an array of applications forward, spanning artificial intelligence, machine learning, control systems, and optimization, showcasing their potential for substantial progress in various domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定的苑睐完成签到 ,获得积分10
刚刚
xiaochen完成签到 ,获得积分10
刚刚
健壮的涑完成签到 ,获得积分10
1秒前
gardenia完成签到,获得积分10
1秒前
Tianling完成签到,获得积分0
1秒前
ting完成签到,获得积分10
1秒前
Emper完成签到,获得积分10
1秒前
Yolen LI完成签到,获得积分0
1秒前
1秒前
lili完成签到,获得积分10
2秒前
刻苦的黑米完成签到,获得积分10
2秒前
2秒前
2秒前
炙热忆文发布了新的文献求助10
2秒前
能干的新筠完成签到,获得积分10
3秒前
JXW2024发布了新的文献求助10
4秒前
4秒前
小龙完成签到,获得积分10
4秒前
5秒前
zheng-homes发布了新的文献求助10
5秒前
欢呼香芋完成签到,获得积分10
5秒前
深情安青应助亿点快乐采纳,获得10
6秒前
jessie发布了新的文献求助10
6秒前
乐哉完成签到,获得积分10
6秒前
Yan完成签到,获得积分10
7秒前
邱琳发布了新的文献求助10
7秒前
phj531完成签到,获得积分10
7秒前
小白羊完成签到,获得积分10
7秒前
南攻完成签到,获得积分10
8秒前
万能图书馆应助Benjamin采纳,获得10
10秒前
scugy完成签到,获得积分20
10秒前
VelesAlexei完成签到,获得积分10
10秒前
柠静樨完成签到,获得积分10
10秒前
11秒前
空间广阔发布了新的文献求助30
11秒前
张渔歌完成签到,获得积分10
11秒前
菠菜发布了新的文献求助150
11秒前
量子星尘发布了新的文献求助10
12秒前
ludong_0完成签到,获得积分10
12秒前
DIAPTERA发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645234
求助须知:如何正确求助?哪些是违规求助? 4768151
关于积分的说明 15027004
捐赠科研通 4803757
什么是DOI,文献DOI怎么找? 2568448
邀请新用户注册赠送积分活动 1525778
关于科研通互助平台的介绍 1485451