Multi-scroll and coexisting attractors in a Hopfield neural network under electromagnetic induction and external stimuli

吸引子 Hopfield网络 计算机科学 人工神经网络 理论(学习稳定性) 混乱的 记忆电阻器 生物神经网络 拓扑(电路) 人工智能 数学 物理 机器学习 数学分析 量子力学 组合数学
作者
D. Vignesh,Jun Ma,Santo Banerjee
出处
期刊:Neurocomputing [Elsevier]
卷期号:564: 126961-126961 被引量:18
标识
DOI:10.1016/j.neucom.2023.126961
摘要

The application of external stimuli to biological neurons is a valuable tool for investigating neuronal properties, understanding neural circuitry, and developing therapeutic interventions for neurological disorders. In this article, we propose a discrete fractional Hopfield neural network model consisting of four neurons to explore the influence of external stimuli in the presence of electromagnetic induction and radiation. To incorporate the electromagnetic induction between connected neurons, we construct and employ a discrete fractional sine memristor. Additionally, we introduce a multi-level pulse function to the sine memristor element to examine the chaotic dynamics of the neural network model. The qualitative behavior of the network model is demonstrated through stability analysis and bifurcation diagrams showcasing chaos. The study also focuses on understanding the coexisting behavior of the neural network model in the presence and absence of external stimuli. Moreover, we investigate the generation of multi-scroll attractors by varying the level of the pulse function, which is introduced to electromagnetic induction. Numerical simulations reveal that increasing the level of the multi-pulse function doubles the number of scrolls in the attractors when external stimuli are present. The findings presented in this article contribute to our understanding of discrete fractional memristors and shed light on the dynamical behavior of neurons and their electrical activity in the brain. Innovation within the discrete fractional-order Hopfield neural networks realm entails the creation and utilization of fresh ideas, methodologies, and strategies that harness fractional-order dynamics to confront diverse hurdles and enhance the effectiveness of Hopfield networks. Discrete fractional-order Hopfield neural networks have the capacity to propel an array of applications forward, spanning artificial intelligence, machine learning, control systems, and optimization, showcasing their potential for substantial progress in various domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助ganchao1776采纳,获得10
刚刚
完美冷安完成签到,获得积分10
刚刚
1秒前
1秒前
神奇的种子完成签到,获得积分10
1秒前
周七七完成签到 ,获得积分10
1秒前
俏皮的采波完成签到,获得积分10
2秒前
科研通AI2S应助斯文的傲珊采纳,获得10
2秒前
脑洞疼应助yaooo采纳,获得10
2秒前
故渊完成签到,获得积分10
3秒前
3秒前
Lucas应助yl采纳,获得10
3秒前
愉快的孤容完成签到,获得积分10
3秒前
加贝完成签到 ,获得积分10
4秒前
范先生完成签到,获得积分10
4秒前
sometimesawake完成签到,获得积分10
4秒前
5秒前
5秒前
爆米花应助会会采纳,获得10
6秒前
wzh完成签到,获得积分10
7秒前
武坤完成签到,获得积分10
8秒前
等待孤风发布了新的文献求助30
8秒前
你好完成签到 ,获得积分10
8秒前
无极微光应助前行的灿采纳,获得20
9秒前
Poker完成签到 ,获得积分10
9秒前
大力元霜完成签到,获得积分10
9秒前
Joker发布了新的文献求助10
9秒前
阳pipi发布了新的文献求助10
9秒前
笑点低的凝阳完成签到,获得积分10
10秒前
爱听歌季节完成签到,获得积分10
10秒前
yaosichao完成签到,获得积分10
10秒前
思蜀完成签到,获得积分10
10秒前
11秒前
想飞的小猴子完成签到,获得积分10
11秒前
挪威的森林完成签到,获得积分10
11秒前
小二郎应助xx采纳,获得10
11秒前
12秒前
嗯嗯发布了新的文献求助10
13秒前
13秒前
迷语完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568425
求助须知:如何正确求助?哪些是违规求助? 4653025
关于积分的说明 14703215
捐赠科研通 4594849
什么是DOI,文献DOI怎么找? 2521311
邀请新用户注册赠送积分活动 1492962
关于科研通互助平台的介绍 1463778