清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improvement of motor imagery electroencephalogram decoding by iterative weighted Sparse-Group Lasso

计算机科学 运动表象 模式识别(心理学) 人工智能 解码方法 判别式 特征选择 脑-机接口 特征(语言学) 支持向量机 聚类分析 机器学习 脑电图 算法 哲学 精神科 语言学 心理学
作者
Bin Liu,Fuwang Wang,Shiwei Wang,Junxiang Chen,Guilin Wen,Rongrong Fu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122286-122286
标识
DOI:10.1016/j.eswa.2023.122286
摘要

Discriminative feature selection is vital for enhancing motor imagery decoding performance in electroencephalogram (EEG) signals. However, existing feature optimization methods have not sufficiently explored the intrinsic attribute distribution of features and their associations with the target class, which could result in spurious correlations between optimized features and class labels, yielding suboptimal performance. Therefore, this study proposed an iterative Weighted Sparse-Group Lasso (iWSGL) model for optimizing Common Spatial Pattern (CSP)-based high-dimensional features, thus further enhancing the decoding accuracy of motor imagery. Specifically, the affinity propagation (AP) clustering algorithm was utilized to adaptively partition the high-dimensional features into multiple groups based on the underlying relationships among them. To evaluate the significance of individual feature within each group and the overall significance of the groups themselves, a weight calculation method was proposed based on conditional entropy. With the weights and feature structural information, a weighted sparse regression model was devised within the iterative Sparse-Group Lasso (iSGL) framework to jointly optimize the CSP-based high-dimensional features. The performance of the proposed method was validated on three datasets using the support vector machine (SVM). The experimental results exhibited the exceptional superiority of the proposed method over the current CSP and its variants, demonstrating its remarkable performance. These findings imply that the proposed model can offer a novel optimization strategy for enhancing pattern recognition of brain intentions in Brain-Computer Interface (BCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乒坛巨人完成签到 ,获得积分10
3秒前
16秒前
Dr.Tang完成签到 ,获得积分10
52秒前
1分钟前
Siren发布了新的文献求助30
1分钟前
披着羊皮的狼完成签到 ,获得积分10
1分钟前
1分钟前
sci完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
yindi1991完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助Siren采纳,获得10
2分钟前
2分钟前
Siren发布了新的文献求助10
2分钟前
ding应助瑁柏采纳,获得10
2分钟前
瑁柏完成签到,获得积分10
2分钟前
2分钟前
2分钟前
瑁柏发布了新的文献求助10
2分钟前
Siren发布了新的文献求助10
2分钟前
3分钟前
Ggap1发布了新的文献求助10
3分钟前
Ggap1完成签到,获得积分10
3分钟前
思源应助Siren采纳,获得10
3分钟前
Raul完成签到 ,获得积分10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Siren发布了新的文献求助10
4分钟前
Xu完成签到,获得积分20
4分钟前
荣浩宇完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI5应助和谐乌龟采纳,获得10
5分钟前
5分钟前
5分钟前
mo发布了新的文献求助10
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513331
关于积分的说明 11167297
捐赠科研通 3248697
什么是DOI,文献DOI怎么找? 1794417
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664