Improvement of motor imagery electroencephalogram decoding by iterative weighted Sparse-Group Lasso

计算机科学 运动表象 模式识别(心理学) 人工智能 解码方法 判别式 特征选择 脑-机接口 特征(语言学) 支持向量机 聚类分析 机器学习 脑电图 算法 哲学 精神科 语言学 心理学
作者
Bin Lu,Fuwang Wang,Shiwei Wang,Junxiang Chen,Guilin Wen,Rongrong Fu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122286-122286 被引量:15
标识
DOI:10.1016/j.eswa.2023.122286
摘要

Discriminative feature selection is vital for enhancing motor imagery decoding performance in electroencephalogram (EEG) signals. However, existing feature optimization methods have not sufficiently explored the intrinsic attribute distribution of features and their associations with the target class, which could result in spurious correlations between optimized features and class labels, yielding suboptimal performance. Therefore, this study proposed an iterative Weighted Sparse-Group Lasso (iWSGL) model for optimizing Common Spatial Pattern (CSP)-based high-dimensional features, thus further enhancing the decoding accuracy of motor imagery. Specifically, the affinity propagation (AP) clustering algorithm was utilized to adaptively partition the high-dimensional features into multiple groups based on the underlying relationships among them. To evaluate the significance of individual feature within each group and the overall significance of the groups themselves, a weight calculation method was proposed based on conditional entropy. With the weights and feature structural information, a weighted sparse regression model was devised within the iterative Sparse-Group Lasso (iSGL) framework to jointly optimize the CSP-based high-dimensional features. The performance of the proposed method was validated on three datasets using the support vector machine (SVM). The experimental results exhibited the exceptional superiority of the proposed method over the current CSP and its variants, demonstrating its remarkable performance. These findings imply that the proposed model can offer a novel optimization strategy for enhancing pattern recognition of brain intentions in Brain-Computer Interface (BCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yogurt_tju发布了新的文献求助10
1秒前
qiang完成签到,获得积分10
1秒前
CucRuotThua发布了新的文献求助10
1秒前
ding应助闪闪小帆采纳,获得10
2秒前
huyingj完成签到,获得积分10
2秒前
3秒前
刘恒宇发布了新的文献求助10
4秒前
racheeeel完成签到,获得积分10
4秒前
5秒前
5秒前
无处不在发布了新的文献求助10
6秒前
nephron发布了新的文献求助10
7秒前
huyingj发布了新的文献求助10
7秒前
英姑应助Always采纳,获得10
7秒前
whhhhh完成签到,获得积分10
8秒前
8秒前
Luo完成签到,获得积分10
8秒前
9秒前
yogurt_tju完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
希汐完成签到,获得积分20
11秒前
朴实的念双完成签到,获得积分10
12秒前
猪猪发布了新的文献求助10
13秒前
13秒前
13秒前
莹莹CY发布了新的文献求助10
14秒前
qiushui发布了新的文献求助10
15秒前
勤恳万宝路完成签到,获得积分10
16秒前
Lily发布了新的文献求助10
16秒前
科研通AI6应助寒冷的樱桃采纳,获得10
16秒前
JamesPei应助Nnn采纳,获得10
17秒前
Goooood发布了新的文献求助20
18秒前
Young完成签到,获得积分10
19秒前
琰鷆发布了新的文献求助10
19秒前
19秒前
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445