Improvement of motor imagery electroencephalogram decoding by iterative weighted Sparse-Group Lasso

计算机科学 运动表象 模式识别(心理学) 人工智能 解码方法 判别式 特征选择 脑-机接口 特征(语言学) 支持向量机 聚类分析 机器学习 脑电图 算法 心理学 语言学 哲学 精神科
作者
Bin Lu,Fuwang Wang,Shiwei Wang,Junxiang Chen,Guilin Wen,Rongrong Fu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122286-122286 被引量:15
标识
DOI:10.1016/j.eswa.2023.122286
摘要

Discriminative feature selection is vital for enhancing motor imagery decoding performance in electroencephalogram (EEG) signals. However, existing feature optimization methods have not sufficiently explored the intrinsic attribute distribution of features and their associations with the target class, which could result in spurious correlations between optimized features and class labels, yielding suboptimal performance. Therefore, this study proposed an iterative Weighted Sparse-Group Lasso (iWSGL) model for optimizing Common Spatial Pattern (CSP)-based high-dimensional features, thus further enhancing the decoding accuracy of motor imagery. Specifically, the affinity propagation (AP) clustering algorithm was utilized to adaptively partition the high-dimensional features into multiple groups based on the underlying relationships among them. To evaluate the significance of individual feature within each group and the overall significance of the groups themselves, a weight calculation method was proposed based on conditional entropy. With the weights and feature structural information, a weighted sparse regression model was devised within the iterative Sparse-Group Lasso (iSGL) framework to jointly optimize the CSP-based high-dimensional features. The performance of the proposed method was validated on three datasets using the support vector machine (SVM). The experimental results exhibited the exceptional superiority of the proposed method over the current CSP and its variants, demonstrating its remarkable performance. These findings imply that the proposed model can offer a novel optimization strategy for enhancing pattern recognition of brain intentions in Brain-Computer Interface (BCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurinse发布了新的文献求助10
刚刚
耍酷的卿应助mumumumu采纳,获得10
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
上官若男应助鲨鲨采纳,获得10
2秒前
3秒前
无极微光应助132采纳,获得20
3秒前
曹杨磊完成签到,获得积分10
3秒前
3秒前
4秒前
xjtu完成签到,获得积分10
5秒前
彭于晏应助spinon采纳,获得10
6秒前
7秒前
KSung完成签到 ,获得积分10
7秒前
大模型应助余周2024采纳,获得10
7秒前
Twonej应助Andy采纳,获得30
8秒前
可莉完成签到 ,获得积分10
9秒前
9秒前
wsdshuai比发布了新的文献求助10
10秒前
魏猛完成签到,获得积分10
10秒前
11秒前
桐桐应助wei采纳,获得10
11秒前
仁爱嫣发布了新的文献求助20
11秒前
力劈华山完成签到,获得积分10
12秒前
JamesPei应助平淡大船采纳,获得10
13秒前
13秒前
13秒前
li给li的求助进行了留言
14秒前
靓丽衫完成签到 ,获得积分10
14秒前
hhh完成签到,获得积分20
15秒前
科研小白完成签到 ,获得积分10
15秒前
ai幸完成签到,获得积分10
15秒前
科研通AI6.1应助积极纲采纳,获得10
15秒前
CodeCraft应助E10100采纳,获得10
15秒前
爆米花应助Long采纳,获得10
16秒前
132完成签到,获得积分10
16秒前
17秒前
shanshanerchuan完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761101
求助须知:如何正确求助?哪些是违规求助? 5527734
关于积分的说明 15398943
捐赠科研通 4897671
什么是DOI,文献DOI怎么找? 2634354
邀请新用户注册赠送积分活动 1582460
关于科研通互助平台的介绍 1537768