Polyimide/Ionic Liquids Hybrid Membranes with NH3-Philic Channels for Ammonia-Based CO2 Separation Processes

渗透 材料科学 离子液体 聚酰亚胺 选择性 气体分离 分子 化学工程 离子键合 纳米技术 有机化学 离子 化学 催化作用 图层(电子) 生物化学 工程类
作者
Haiyan Jiang,Tingting Li,Lu Bai,Jiuli Han,Xiaochun Zhang,Haifeng Dong,Shaojuan Zeng,Shuangjiang Luo,Xiangping Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (44): 51204-51214 被引量:2
标识
DOI:10.1021/acsami.3c12200
摘要

An efficient separation technology involving ammonia (NH3) and carbon dioxide (CO2) is of great importance for achieving low-carbon economy, environmental protection, and resource utilization. However, directly separating NH3 and CO2 for ammonia-based CO2 capture processes is still a great challenge. Herein, we propose a new strategy for selective separation of NH3 and CO2 by functional hybrid membranes that integrate polyimide (PI) and ionic liquids (ILs). The incorporated protic IL [Bim][NTf2] is confined in the interchain segment of PI, which decreases the fractional free volume and narrows the gas transport channel, benefiting the high separation selectivity of hybrid membranes. At the same time, the confined IL also provides high NH3 affinity for transport channels, promoting NH3 selective and fast transport owing to strong hydrogen bonding interaction between [Bim][NTf2] and NH3 molecules. Thus, the optimal hybrid membrane exhibits an ultrahigh NH3/CO2 ideal selectivity of up to 159 at 30 °C without sacrificing permeability, which is 60 times higher than that of the neat PI membrane and superior to the state-of-the art reported values. Moreover, the introduction of [Bim][NTf2] also reduces the permeation active energy of NH3 and reverses the hybrid membrane toward “NH3 affinity”, as understood by studying the effect of temperature. Also, NH3 molecules are much easier to transport at high temperature, showing great application potential in direct NH3/CO2 separation. Overall, this work provides a promising ultraselective membrane material for ammonia-based CO2 capture processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
木子完成签到,获得积分20
6秒前
7秒前
ltt发布了新的文献求助10
9秒前
9秒前
zjy发布了新的文献求助10
10秒前
司藤完成签到 ,获得积分10
10秒前
荣誉完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
2311发布了新的文献求助10
14秒前
昵称发布了新的文献求助10
18秒前
科研通AI2S应助阿伟采纳,获得10
18秒前
可爱的函函应助ltt采纳,获得10
19秒前
19秒前
sgy完成签到,获得积分10
19秒前
Aruo完成签到,获得积分10
19秒前
20秒前
20秒前
Owen应助風起天岚采纳,获得10
21秒前
顾矜应助DWD采纳,获得10
21秒前
小马甲应助小王采纳,获得10
22秒前
24秒前
水悟子发布了新的文献求助10
24秒前
李恩乐发布了新的文献求助10
25秒前
槿裡完成签到 ,获得积分10
25秒前
HouYv完成签到 ,获得积分10
26秒前
26秒前
30秒前
30秒前
jagger发布了新的文献求助10
31秒前
31秒前
33秒前
33秒前
DWD发布了新的文献求助10
34秒前
35秒前
高分求助中
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775376
求助须知:如何正确求助?哪些是违规求助? 3321021
关于积分的说明 10203165
捐赠科研通 3035891
什么是DOI,文献DOI怎么找? 1665880
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757740