Large-Scale Evaluation of Topic Models and Dimensionality Reduction Methods for 2D Text Spatialization

计算机科学 降维 空间化 维数之咒 水准点(测量) 人工智能 主题模型 集合(抽象数据类型) 语料库 机器学习 数据挖掘 自然语言处理 模式识别(心理学) 大地测量学 社会学 人类学 程序设计语言 地理
作者
Daniel Atzberger,Tim Cech,Matthias Trapp,Rico Richter,Willy Scheibel,Jürgen Döllner,Tobias Schreck
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:4
标识
DOI:10.1109/tvcg.2023.3326569
摘要

Topic models are a class of unsupervised learning algorithms for detecting the semantic structure within a text corpus. Together with a subsequent dimensionality reduction algorithm, topic models can be used for deriving spatializations for text corpora as two-dimensional scatter plots, reflecting semantic similarity between the documents and supporting corpus analysis. Although the choice of the topic model, the dimensionality reduction, and their underlying hyperparameters significantly impact the resulting layout, it is unknown which particular combinations result in high-quality layouts with respect to accuracy and perception metrics. To investigate the effectiveness of topic models and dimensionality reduction methods for the spatialization of corpora as two-dimensional scatter plots (or basis for landscape-type visualizations), we present a large-scale, benchmark-based computational evaluation. Our evaluation consists of (1) a set of corpora, (2) a set of layout algorithms that are combinations of topic models and dimensionality reductions, and (3) quality metrics for quantifying the resulting layout. The corpora are given as document-term matrices, and each document is assigned to a thematic class. The chosen metrics quantify the preservation of local and global properties and the perceptual effectiveness of the two-dimensional scatter plots. By evaluating the benchmark on a computing cluster, we derived a multivariate dataset with over 45 000 individual layouts and corresponding quality metrics. Based on the results, we propose guidelines for the effective design of text spatializations that are based on topic models and dimensionality reductions. As a main result, we show that interpretable topic models are beneficial for capturing the structure of text corpora. We furthermore recommend the use of t-SNE as a subsequent dimensionality reduction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林云夕发布了新的文献求助10
刚刚
九九发布了新的文献求助10
刚刚
刘凤莲关注了科研通微信公众号
刚刚
weven完成签到,获得积分10
1秒前
宿雨完成签到,获得积分10
1秒前
1秒前
2秒前
泯珉发布了新的文献求助10
2秒前
Hello应助哈哈镜阿姐采纳,获得10
2秒前
满意语芙发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
塔木完成签到,获得积分10
4秒前
宿雨发布了新的文献求助10
4秒前
4秒前
幸运的元元完成签到,获得积分10
4秒前
zoe发布了新的文献求助10
5秒前
JJFly发布了新的文献求助10
5秒前
5秒前
wanci应助Orange采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
ChenLan完成签到,获得积分20
7秒前
香菜丸子发布了新的文献求助10
7秒前
shi完成签到,获得积分20
7秒前
myc641完成签到 ,获得积分10
7秒前
7秒前
zhscu完成签到,获得积分10
7秒前
weven发布了新的文献求助10
7秒前
7秒前
8秒前
LiuQianyi完成签到 ,获得积分10
8秒前
香瓜完成签到,获得积分10
8秒前
TK发布了新的文献求助10
8秒前
8秒前
8秒前
小鱼马完成签到,获得积分10
9秒前
11mao11完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851