Large-Scale Evaluation of Topic Models and Dimensionality Reduction Methods for 2D Text Spatialization

计算机科学 降维 空间化 维数之咒 水准点(测量) 人工智能 主题模型 集合(抽象数据类型) 语料库 机器学习 数据挖掘 自然语言处理 模式识别(心理学) 大地测量学 社会学 人类学 程序设计语言 地理
作者
Daniel Atzberger,Tim Cech,Matthias Trapp,Rico Richter,Willy Scheibel,Jürgen Döllner,Tobias Schreck
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:4
标识
DOI:10.1109/tvcg.2023.3326569
摘要

Topic models are a class of unsupervised learning algorithms for detecting the semantic structure within a text corpus. Together with a subsequent dimensionality reduction algorithm, topic models can be used for deriving spatializations for text corpora as two-dimensional scatter plots, reflecting semantic similarity between the documents and supporting corpus analysis. Although the choice of the topic model, the dimensionality reduction, and their underlying hyperparameters significantly impact the resulting layout, it is unknown which particular combinations result in high-quality layouts with respect to accuracy and perception metrics. To investigate the effectiveness of topic models and dimensionality reduction methods for the spatialization of corpora as two-dimensional scatter plots (or basis for landscape-type visualizations), we present a large-scale, benchmark-based computational evaluation. Our evaluation consists of (1) a set of corpora, (2) a set of layout algorithms that are combinations of topic models and dimensionality reductions, and (3) quality metrics for quantifying the resulting layout. The corpora are given as document-term matrices, and each document is assigned to a thematic class. The chosen metrics quantify the preservation of local and global properties and the perceptual effectiveness of the two-dimensional scatter plots. By evaluating the benchmark on a computing cluster, we derived a multivariate dataset with over 45 000 individual layouts and corresponding quality metrics. Based on the results, we propose guidelines for the effective design of text spatializations that are based on topic models and dimensionality reductions. As a main result, we show that interpretable topic models are beneficial for capturing the structure of text corpora. We furthermore recommend the use of t-SNE as a subsequent dimensionality reduction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小许要顺利毕业完成签到,获得积分10
刚刚
科研通AI6应助正直胡萝卜采纳,获得10
刚刚
1秒前
WANG发布了新的文献求助10
1秒前
单身的衫完成签到,获得积分10
2秒前
zjz1发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
南宫白竹发布了新的文献求助10
2秒前
碗_发布了新的文献求助10
3秒前
lelele发布了新的文献求助10
3秒前
4秒前
悦書发布了新的文献求助10
4秒前
4秒前
星辰完成签到,获得积分10
4秒前
Jasper应助谢序泽采纳,获得10
4秒前
冷漠的布丁完成签到,获得积分10
4秒前
5秒前
美好斓发布了新的文献求助50
5秒前
小白菜发布了新的文献求助10
5秒前
超级幼旋应助小马采纳,获得10
6秒前
Orange应助顾钦采纳,获得10
7秒前
Akim应助qidada采纳,获得10
7秒前
7秒前
宋宋发布了新的文献求助10
8秒前
8秒前
千岛完成签到,获得积分20
9秒前
慕青应助方方采纳,获得10
9秒前
靓丽雁风发布了新的文献求助10
9秒前
orixero应助亮仔采纳,获得10
9秒前
Hao发布了新的文献求助10
9秒前
小悟空的美好年华完成签到,获得积分10
10秒前
夜枭完成签到,获得积分10
10秒前
10秒前
叉叉桑完成签到,获得积分10
11秒前
ldkshifo完成签到,获得积分10
11秒前
上官若男应助能量球采纳,获得10
11秒前
十个勤天完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551649
求助须知:如何正确求助?哪些是违规求助? 4636518
关于积分的说明 14644292
捐赠科研通 4578369
什么是DOI,文献DOI怎么找? 2510780
邀请新用户注册赠送积分活动 1486083
关于科研通互助平台的介绍 1457449