A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer’s Disease involving data synthesis

人工智能 分类器(UML) 计算机科学 正电子发射断层摄影术 模式识别(心理学) 认知障碍 多层感知器 感知器 磁共振成像 人工神经网络 机器学习 医学 疾病 病理 核医学 放射科
作者
Ke Chen,Ying Weng,Akram A. Hosseini,Tom Dening,Guokun Zuo,Yiming Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:169: 442-452 被引量:15
标识
DOI:10.1016/j.neunet.2023.10.040
摘要

Alzheimer's Disease (AD) is a neurodegenerative disease that commonly occurs in older people. It is characterized by both cognitive and functional impairment. However, as AD has an unclear pathological cause, it can be hard to diagnose with confidence. This is even more so in the early stage of Mild Cognitive Impairment (MCI). This paper proposes a U-Net based Generative Adversarial Network (GAN) to synthesize fluorodeoxyglucose -positron emission tomography (FDG-PET) from magnetic resonance imaging - T1 weighted imaging (MRI-T1WI) for further usage in AD diagnosis including its early-stage MCI. The experiments have displayed promising results with Structural Similarity Index Measure (SSIM) reaching 0.9714. Furthermore, three types of classifiers are developed, i.e., one Multi-Layer Perceptron (MLP) based classifier, two Graph Neural Network (GNN) based classifiers where one is for graph classification and the other is for node classification. 10-fold cross-validation has been conducted on all trials of experiments for classifier comparison. The performance of these three types of classifiers has been compared with the different input modalities setting and data fusion strategies. The results have shown that GNN based node classifier surpasses the other two types of classifiers, and has achieved the state-of-the-art (SOTA) performance with the best accuracy at 90.18% for 3-class classification, namely AD, MCI and normal control (NC) with the synthesized fluorodeoxyglucose - positron emission tomography (FDG-PET) features fused at the input level. Moreover, involving synthesized FDG-PET as part of the input with proper data fusion strategies has also proved to enhance all three types of classifiers' performance. This work provides support for the notion that machine learning-derived image analysis may be a useful approach to improving the diagnosis of AD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AHA完成签到,获得积分10
1秒前
犹豫的烨霖完成签到,获得积分10
1秒前
1秒前
简默发布了新的文献求助10
1秒前
Soyuu完成签到,获得积分20
1秒前
走着完成签到,获得积分10
2秒前
2秒前
依小米完成签到 ,获得积分10
3秒前
sttail应助hu采纳,获得10
3秒前
砚行书完成签到,获得积分10
3秒前
熙怡完成签到,获得积分10
3秒前
乐乐应助一念之间采纳,获得10
3秒前
rsy完成签到,获得积分10
3秒前
芝士完成签到,获得积分10
3秒前
3秒前
4秒前
自然有手就行完成签到,获得积分10
4秒前
huegeeee完成签到,获得积分10
4秒前
4秒前
代代发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
Dean完成签到,获得积分0
5秒前
无情曼易完成签到,获得积分10
5秒前
熙怡发布了新的文献求助10
5秒前
6秒前
aYXZ321完成签到,获得积分10
6秒前
Lucas应助完美的橘子采纳,获得10
6秒前
6秒前
鞠晓蕾完成签到,获得积分10
6秒前
创不可贴完成签到,获得积分10
6秒前
岁岁平安发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
子时月发布了新的文献求助10
7秒前
spw完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017