已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer’s Disease involving data synthesis

人工智能 分类器(UML) 计算机科学 正电子发射断层摄影术 模式识别(心理学) 认知障碍 多层感知器 感知器 人工神经网络 机器学习 医学 疾病 病理 核医学
作者
Ke Chen,Ying Weng,Akram A. Hosseini,Tom Dening,Guokun Zuo,Yiming Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:169: 442-452 被引量:3
标识
DOI:10.1016/j.neunet.2023.10.040
摘要

Alzheimer's Disease (AD) is a neurodegenerative disease that commonly occurs in older people. It is characterized by both cognitive and functional impairment. However, as AD has an unclear pathological cause, it can be hard to diagnose with confidence. This is even more so in the early stage of Mild Cognitive Impairment (MCI). This paper proposes a U-Net based Generative Adversarial Network (GAN) to synthesize fluorodeoxyglucose -positron emission tomography (FDG-PET) from magnetic resonance imaging - T1 weighted imaging (MRI-T1WI) for further usage in AD diagnosis including its early-stage MCI. The experiments have displayed promising results with Structural Similarity Index Measure (SSIM) reaching 0.9714. Furthermore, three types of classifiers are developed, i.e., one Multi-Layer Perceptron (MLP) based classifier, two Graph Neural Network (GNN) based classifiers where one is for graph classification and the other is for node classification. 10-fold cross-validation has been conducted on all trials of experiments for classifier comparison. The performance of these three types of classifiers has been compared with the different input modalities setting and data fusion strategies. The results have shown that GNN based node classifier surpasses the other two types of classifiers, and has achieved the state-of-the-art (SOTA) performance with the best accuracy at 90.18% for 3-class classification, namely AD, MCI and normal control (NC) with the synthesized fluorodeoxyglucose - positron emission tomography (FDG-PET) features fused at the input level. Moreover, involving synthesized FDG-PET as part of the input with proper data fusion strategies has also proved to enhance all three types of classifiers' performance. This work provides support for the notion that machine learning-derived image analysis may be a useful approach to improving the diagnosis of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shime完成签到,获得积分10
1秒前
研学发布了新的文献求助10
2秒前
4秒前
一一完成签到,获得积分10
5秒前
6秒前
zulpiye发布了新的文献求助10
7秒前
ixueyi发布了新的文献求助10
9秒前
姜淮完成签到 ,获得积分10
10秒前
洛神完成签到,获得积分10
14秒前
20秒前
ixueyi完成签到,获得积分10
23秒前
26秒前
阉太狼完成签到,获得积分10
27秒前
落后的怀柔完成签到,获得积分10
28秒前
彦卿完成签到 ,获得积分10
29秒前
慕青应助动听的小天鹅采纳,获得10
31秒前
暴走的烤包子完成签到 ,获得积分0
31秒前
英姑应助科研通管家采纳,获得30
32秒前
辜月十二完成签到 ,获得积分10
34秒前
36秒前
Benjamin完成签到 ,获得积分10
38秒前
CodeCraft应助千纸鹤采纳,获得10
38秒前
jyy应助Han采纳,获得10
39秒前
40秒前
41秒前
xu发布了新的文献求助10
41秒前
guyutian应助DHM采纳,获得10
47秒前
gladuhere完成签到 ,获得积分10
48秒前
51秒前
翻译度完成签到,获得积分10
58秒前
yjn完成签到,获得积分10
59秒前
李健应助zjl123采纳,获得10
1分钟前
milian完成签到,获得积分10
1分钟前
1分钟前
任政宇关注了科研通微信公众号
1分钟前
Hello应助研学采纳,获得10
1分钟前
1分钟前
111111zx111发布了新的文献求助10
1分钟前
kk发布了新的文献求助10
1分钟前
iamhawthorn发布了新的文献求助10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229640
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198216
捐赠科研通 2544609
什么是DOI,文献DOI怎么找? 1374513
科研通“疑难数据库(出版商)”最低求助积分说明 646978
邀请新用户注册赠送积分活动 621749