A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer’s Disease involving data synthesis

人工智能 分类器(UML) 计算机科学 正电子发射断层摄影术 模式识别(心理学) 认知障碍 多层感知器 感知器 磁共振成像 人工神经网络 机器学习 医学 疾病 病理 核医学 放射科
作者
Ke Chen,Ying Weng,Akram A. Hosseini,Tom Dening,Guokun Zuo,Yiming Zhang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:169: 442-452 被引量:15
标识
DOI:10.1016/j.neunet.2023.10.040
摘要

Alzheimer's Disease (AD) is a neurodegenerative disease that commonly occurs in older people. It is characterized by both cognitive and functional impairment. However, as AD has an unclear pathological cause, it can be hard to diagnose with confidence. This is even more so in the early stage of Mild Cognitive Impairment (MCI). This paper proposes a U-Net based Generative Adversarial Network (GAN) to synthesize fluorodeoxyglucose -positron emission tomography (FDG-PET) from magnetic resonance imaging - T1 weighted imaging (MRI-T1WI) for further usage in AD diagnosis including its early-stage MCI. The experiments have displayed promising results with Structural Similarity Index Measure (SSIM) reaching 0.9714. Furthermore, three types of classifiers are developed, i.e., one Multi-Layer Perceptron (MLP) based classifier, two Graph Neural Network (GNN) based classifiers where one is for graph classification and the other is for node classification. 10-fold cross-validation has been conducted on all trials of experiments for classifier comparison. The performance of these three types of classifiers has been compared with the different input modalities setting and data fusion strategies. The results have shown that GNN based node classifier surpasses the other two types of classifiers, and has achieved the state-of-the-art (SOTA) performance with the best accuracy at 90.18% for 3-class classification, namely AD, MCI and normal control (NC) with the synthesized fluorodeoxyglucose - positron emission tomography (FDG-PET) features fused at the input level. Moreover, involving synthesized FDG-PET as part of the input with proper data fusion strategies has also proved to enhance all three types of classifiers' performance. This work provides support for the notion that machine learning-derived image analysis may be a useful approach to improving the diagnosis of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俭朴紫寒发布了新的文献求助10
1秒前
小甘完成签到,获得积分10
2秒前
王檬完成签到,获得积分10
2秒前
拜无忧关注了科研通微信公众号
2秒前
科研張发布了新的文献求助10
2秒前
4秒前
5秒前
6秒前
6秒前
LL完成签到,获得积分10
7秒前
8秒前
研友_VZG7GZ应助Ran采纳,获得10
8秒前
dan发布了新的文献求助10
8秒前
Xumm完成签到,获得积分10
8秒前
简单以宁2完成签到,获得积分10
8秒前
9秒前
10秒前
大树完成签到 ,获得积分10
11秒前
JerryZ发布了新的文献求助10
13秒前
13秒前
水煮牛牛发布了新的文献求助10
13秒前
王檬发布了新的文献求助10
14秒前
世界和平发布了新的文献求助10
14秒前
16秒前
邢文瑞发布了新的文献求助50
19秒前
NOME完成签到,获得积分10
19秒前
健康的雁凡完成签到,获得积分10
20秒前
不努力的研究生完成签到,获得积分20
21秒前
一叶知秋发布了新的文献求助10
21秒前
yznfly应助从容的鲜花采纳,获得30
22秒前
22秒前
乐观碧彤发布了新的文献求助10
22秒前
Hello应助dan采纳,获得30
23秒前
受伤芝麻完成签到,获得积分10
24秒前
25秒前
星辰大海应助追风采纳,获得10
25秒前
酿雪未成发布了新的文献求助10
25秒前
小马甲应助NSJN2022采纳,获得10
25秒前
lm发布了新的文献求助10
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962851
求助须知:如何正确求助?哪些是违规求助? 3508777
关于积分的说明 11143063
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791638
邀请新用户注册赠送积分活动 873002
科研通“疑难数据库(出版商)”最低求助积分说明 803577