Multiview Fusion Driven 3-D Point Cloud Semantic Segmentation Based on Hierarchical Transformer

计算机科学 点云 人工智能 分割 计算机视觉 光学(聚焦) 融合 体素 模式识别(心理学) 语言学 哲学 物理 光学
作者
Wang Xu,Xu Li,Peizhou Ni,Xingxing Guang,Hang Luo,Xijun Zhao
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (24): 31461-31470 被引量:6
标识
DOI:10.1109/jsen.2023.3328603
摘要

Three-dimensional semantic segmentation is a key task of environment understanding in various outdoor scenes. Due to the sparsity and varying density of point clouds, it becomes challenging to obtain fine-gained segmentation results. Previous point-based and voxel-based methods suffer from the expensive computational cost. Recent 2-D projection-based methods, including range-view (RV), bird-eye-view (BEV), and multiview fusion methods, can run in real time, but the information loss during the projection leads to the low accuracy. Also, we find that the occlusion and interlacing problems exist in single projection-based methods and most multiview fusion networks only focus on the output-level fusion. Considering the above issues, we propose a multilevel multiview fusion network using attention modules and hierarchical transformer, which ensures the effectiveness and efficiency mainly by the following three aspects: 1) the spatial-channel attention module (SCAM) integrates contextual information between points and learn differences of each channel's features; 2) the proposed geometry-based multiprojection fusion module (GMFM) achieves the geometric feature alignment between RV and BEV and fuses the features of the two views at both feature level and output level; and 3) we introduce KPConv to replace KNN, which can reduce the information loss during the postprocessing. Experiments are conducted on both structured and unstructured datasets, including urban dataset SemanticKITTI and off-road dataset Rellis3D. Our results achieve a better performance compared to other projection-based methods and are comparable with the state-of-the-art Cylinder3D.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助我爱金哥采纳,获得10
刚刚
顺利煎蛋发布了新的文献求助10
1秒前
1秒前
1秒前
北城发布了新的文献求助10
1秒前
1秒前
CDKSEVEN完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
zhuanghj5发布了新的文献求助10
4秒前
绵绵球发布了新的文献求助100
4秒前
4秒前
世界上最后一只呜呜怪完成签到,获得积分10
4秒前
cc2713206完成签到,获得积分0
5秒前
九月发布了新的文献求助10
5秒前
5秒前
Jasper应助北城采纳,获得10
7秒前
A阿澍发布了新的文献求助10
7秒前
顺利煎蛋完成签到,获得积分10
7秒前
肖肖发布了新的文献求助10
8秒前
chengmin完成签到 ,获得积分10
8秒前
wei发布了新的文献求助50
8秒前
9秒前
10秒前
sunwen发布了新的文献求助10
10秒前
11秒前
12秒前
北城完成签到,获得积分10
13秒前
十三完成签到 ,获得积分10
14秒前
打打应助傲寒采纳,获得10
14秒前
小李吃小孩完成签到,获得积分10
14秒前
含蓄大雁完成签到,获得积分10
14秒前
15秒前
Livrik发布了新的文献求助10
16秒前
卢敏明发布了新的文献求助10
16秒前
李健应助俏皮的白柏采纳,获得10
17秒前
17秒前
很好关注了科研通微信公众号
18秒前
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035