Multiview Fusion Driven 3-D Point Cloud Semantic Segmentation Based on Hierarchical Transformer

计算机科学 点云 人工智能 分割 计算机视觉 光学(聚焦) 融合 体素 模式识别(心理学) 语言学 哲学 物理 光学
作者
Wang Xu,Xu Li,Peizhou Ni,Xingxing Guang,Hang Luo,Xijun Zhao
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (24): 31461-31470 被引量:6
标识
DOI:10.1109/jsen.2023.3328603
摘要

Three-dimensional semantic segmentation is a key task of environment understanding in various outdoor scenes. Due to the sparsity and varying density of point clouds, it becomes challenging to obtain fine-gained segmentation results. Previous point-based and voxel-based methods suffer from the expensive computational cost. Recent 2-D projection-based methods, including range-view (RV), bird-eye-view (BEV), and multiview fusion methods, can run in real time, but the information loss during the projection leads to the low accuracy. Also, we find that the occlusion and interlacing problems exist in single projection-based methods and most multiview fusion networks only focus on the output-level fusion. Considering the above issues, we propose a multilevel multiview fusion network using attention modules and hierarchical transformer, which ensures the effectiveness and efficiency mainly by the following three aspects: 1) the spatial-channel attention module (SCAM) integrates contextual information between points and learn differences of each channel's features; 2) the proposed geometry-based multiprojection fusion module (GMFM) achieves the geometric feature alignment between RV and BEV and fuses the features of the two views at both feature level and output level; and 3) we introduce KPConv to replace KNN, which can reduce the information loss during the postprocessing. Experiments are conducted on both structured and unstructured datasets, including urban dataset SemanticKITTI and off-road dataset Rellis3D. Our results achieve a better performance compared to other projection-based methods and are comparable with the state-of-the-art Cylinder3D.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
华仔应助sci大户采纳,获得10
2秒前
斯文败类应助ccc采纳,获得10
3秒前
Van完成签到,获得积分10
5秒前
古或今完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
niceLDD应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得30
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
ccc发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
Akim应助真不叫阿呆采纳,获得10
15秒前
Alice完成签到,获得积分20
16秒前
tier3完成签到,获得积分10
17秒前
南风发布了新的文献求助10
18秒前
度ewf发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
20秒前
科研通AI6应助cyy2339采纳,获得10
21秒前
科目三应助迷路谷蓝采纳,获得10
23秒前
在水一方应助香香香采纳,获得10
24秒前
范良聪发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432