PhAI: A deep learning approach to solve the crystallographic phase problem

移相器 相位问题 从头算 人工神经网络 衍射 相(物质) 分辨率(逻辑) 计算机科学 结晶学 物理 算法 人工智能 化学 量子力学 光学
作者
Anders Ø. Madsen,Anders S. Larsen,Toms Rekis
标识
DOI:10.26434/chemrxiv-2023-fcdps
摘要

For more than 100 years, X-ray crystallography has provided a unique view on the three-dimensional structure of atoms and molecules in crystals. However, to determine even the simplest structures now and a hundred years ago, one needs to overcome a mathematical hurdle for which the solution is not known even to this day. To reconstruct the 3-dimensional electron density map, from which the structure can be inferred, the complex structure factors F = |F| exp(iφ) of a sufficiently large number of diffracted reflections must be known. In a conventional diffraction experiment, only the amplitudes |F| are obtained, while the phases φ are lost. This is the crystallographic phase problem. Seventy years of research has established successful ab initio phasing methods such as direct methods and charge flipping. However, these methods are limited to atomic- resolution data, complicating structure determination from weakly-scattering crystals. Here, we show that a neural network can solve the crystallographic phase problem at a resolution of only 2 Å. We have developed an approach to generate millions of artificial structures and respective diffraction data for training of a neural network. We demonstrate that ab initio phasing based on this neural network is possible using 10 % to 20 % of the data needed for present-day methods, breaking the paradigm that atomic resolution is necessary for ab initio structure solution. The current neural network works in common centrosymmetric space groups and for modest unit cell dimensions, and suggests that neural networks can be used to solve the phase problem in the general case. This approach will enable structure solution for weakly-scattering crystals such as metal-organic frameworks or nanometer-sized crystals investigated using electron diffraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
刚刚
思源应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得50
刚刚
孙雁哝发布了新的文献求助10
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
司徒不正应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
简单宛秋发布了新的文献求助10
1秒前
小蘑菇应助夏尔采纳,获得10
3秒前
wwbb完成签到,获得积分10
3秒前
3秒前
bendanzxx发布了新的文献求助10
3秒前
4秒前
Orange应助司空豁采纳,获得10
5秒前
调皮正豪发布了新的文献求助20
5秒前
8秒前
桃子发布了新的文献求助10
8秒前
打打应助TALE采纳,获得10
8秒前
光年发布了新的文献求助10
8秒前
快递乱跑完成签到 ,获得积分10
8秒前
CipherSage应助洁净晓夏采纳,获得10
9秒前
娜娜完成签到,获得积分10
12秒前
萧水白应助莓莓MM采纳,获得10
12秒前
夏尔完成签到,获得积分10
12秒前
高贵的裘发布了新的文献求助10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122