PhAI: A deep learning approach to solve the crystallographic phase problem

移相器 相位问题 从头算 人工神经网络 衍射 相(物质) 分辨率(逻辑) 计算机科学 结晶学 物理 算法 人工智能 化学 量子力学 光学
作者
Anders Ø. Madsen,Anders S. Larsen,Toms Rekis
标识
DOI:10.26434/chemrxiv-2023-fcdps
摘要

For more than 100 years, X-ray crystallography has provided a unique view on the three-dimensional structure of atoms and molecules in crystals. However, to determine even the simplest structures now and a hundred years ago, one needs to overcome a mathematical hurdle for which the solution is not known even to this day. To reconstruct the 3-dimensional electron density map, from which the structure can be inferred, the complex structure factors F = |F| exp(iφ) of a sufficiently large number of diffracted reflections must be known. In a conventional diffraction experiment, only the amplitudes |F| are obtained, while the phases φ are lost. This is the crystallographic phase problem. Seventy years of research has established successful ab initio phasing methods such as direct methods and charge flipping. However, these methods are limited to atomic- resolution data, complicating structure determination from weakly-scattering crystals. Here, we show that a neural network can solve the crystallographic phase problem at a resolution of only 2 Å. We have developed an approach to generate millions of artificial structures and respective diffraction data for training of a neural network. We demonstrate that ab initio phasing based on this neural network is possible using 10 % to 20 % of the data needed for present-day methods, breaking the paradigm that atomic resolution is necessary for ab initio structure solution. The current neural network works in common centrosymmetric space groups and for modest unit cell dimensions, and suggests that neural networks can be used to solve the phase problem in the general case. This approach will enable structure solution for weakly-scattering crystals such as metal-organic frameworks or nanometer-sized crystals investigated using electron diffraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐不加冰完成签到,获得积分10
刚刚
Alex完成签到,获得积分10
刚刚
肉哥完成签到,获得积分10
1秒前
XZY发布了新的文献求助20
2秒前
2秒前
112发布了新的文献求助10
2秒前
研友_VZG7GZ应助yyt采纳,获得10
3秒前
隐形曼青应助花开采纳,获得10
4秒前
善学以致用应助阔达荣轩采纳,获得10
5秒前
xin完成签到,获得积分20
5秒前
6秒前
ss完成签到,获得积分10
6秒前
6秒前
充电宝应助jjjxxxmmm采纳,获得10
6秒前
7秒前
7秒前
8秒前
9秒前
追寻雨发布了新的文献求助10
9秒前
JOKER完成签到,获得积分10
10秒前
10秒前
花开完成签到,获得积分20
10秒前
英俊的胜发布了新的文献求助10
11秒前
Blake完成签到 ,获得积分10
11秒前
MingY发布了新的文献求助30
11秒前
11秒前
11秒前
森林发布了新的文献求助10
12秒前
哈哈完成签到,获得积分10
13秒前
领导范儿应助搞怪莫茗采纳,获得10
14秒前
14秒前
LMFY完成签到,获得积分10
15秒前
青菱青完成签到 ,获得积分10
16秒前
16秒前
16秒前
SciGPT应助嘻嘻采纳,获得10
17秒前
GOODYUE发布了新的文献求助10
17秒前
康复路牛粪完成签到 ,获得积分10
17秒前
eerrttyyuu发布了新的文献求助30
18秒前
精气被实验吸干完成签到,获得积分10
20秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141865
求助须知:如何正确求助?哪些是违规求助? 2792802
关于积分的说明 7804260
捐赠科研通 2449115
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626748
版权声明 601265