爆炸物
材料科学
限制
人工神经网络
生物系统
休克(循环)
压实
领域(数学)
统计物理学
计算机科学
人工智能
机械工程
物理
复合材料
数学
生物
内科学
工程类
有机化学
化学
医学
纯数学
作者
Brenden W. Hamilton,Timothy C. Germann
出处
期刊:Physical Review Materials
[American Physical Society]
日期:2023-08-14
卷期号:7 (8)
被引量:1
标识
DOI:10.1103/physrevmaterials.7.085601
摘要
The rapid compaction of granular media results in localized heating that can induce chemical reactions, phase transformations, and melting. However, there are numerous mechanisms in play that can be dependent on a variety of microstructural features. Machine learning techniques such as neural networks offer a ubiquitous method to develop models for physical processes. Limiting what kind of microstructural information is used as an input and assessing normalized changes in network error, the relative importance of different mechanisms can be inferred. Here we utilize binned, initial density information as network inputs to predict local shock heating in a granular high explosive trained from large-scale molecular dynamics simulations. The spatial extent of the density field used in the network is altered to assess the importance and relevant length scales of the physical mechanisms in play, where different microstructural features result in different predictive capabilities.
科研通智能强力驱动
Strongly Powered by AbleSci AI