Exploring the Benefits of Deep Learning-Based Sensors Error Estimation for Improved Attitude and Position Accuracy

惯性测量装置 陀螺仪 计算机科学 人工智能 惯性导航系统 均方误差 深度学习 计量单位 基本事实 卷积神经网络 计算机视觉 惯性参考系 工程类 数学 航空航天工程 统计 物理 量子力学
作者
Eslam Mounier,Paulo Ricardo Marques de Araujo,Mohamed Elhabiby,Michael J. Korenberg,Aboelmagd Noureldin
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting
标识
DOI:10.33012/2023.19273
摘要

Inertial Navigation System (INS) is a primary component in various integrated navigation systems. However, the performance of INS is hindered due to the numerical integration of the measurements obtained from the Inertial Measurement Unit (IMU), which are contaminated by various sensor errors, especially with Micro-Electro-Mechanical Systems (MEMS) sensors. To address these challenges, we examine the performance of modern Deep Learning (DL) methods for mitigating such errors. Specifically, we propose a Deep Gyroscope Error (DGE) model designed to estimate and compensate for errors in the gyroscope measurements. The DGE model combines the feature extraction capabilities of a Convolutional Neural Network (CNN) with the sequential data modelling strengths of Long Short-Term Memory (LSTM). Instead of relying on high-grade IMU measurements, we distinctively employ an inverse mechanization algorithm that generates artificial IMU measurements from the integrated navigation solution states. This approach provides accurate ground truth data facilitating direct supervised learning. The proposed model was trained and verified using real data from MEMS-IMU on real road test experiments performed on a land vehicle in Kingston, Ontario, Canada. When subjected to evaluation against unseen data, the DGE model demonstrated significant improvements in standalone inertial navigation scenarios, particularly in mitigating attitude drift errors and subsequently improving position estimation. Over a uniform testing interval, the DGE model achieved an average reduction in attitude RMSE by 43.1% and in position RMSE by 25.4%. This emphasizes the efficacy of the proposed method in improving INS performance, particularly when operating in standalone mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
蜀安应助科研通管家采纳,获得30
1秒前
传奇3应助ShiBoSong采纳,获得10
1秒前
Ky_Mac应助科研通管家采纳,获得30
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
wkjfh应助科研通管家采纳,获得10
1秒前
蜀安应助科研通管家采纳,获得30
1秒前
wkjfh应助科研通管家采纳,获得10
1秒前
Ky_Mac应助科研通管家采纳,获得30
1秒前
wkjfh应助科研通管家采纳,获得10
1秒前
wkjfh应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得20
1秒前
大宝君应助科研通管家采纳,获得30
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
大宝君应助科研通管家采纳,获得30
1秒前
Ava应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得30
1秒前
蛇從革应助科研通管家采纳,获得30
1秒前
蜀安应助科研通管家采纳,获得30
1秒前
JamesPei应助小呆子采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得30
1秒前
小青椒应助科研通管家采纳,获得30
1秒前
蜀安应助科研通管家采纳,获得30
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
蜀安应助科研通管家采纳,获得30
2秒前
康乐顺岸完成签到,获得积分10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093