Exploring the Benefits of Deep Learning-Based Sensors Error Estimation for Improved Attitude and Position Accuracy

惯性测量装置 陀螺仪 计算机科学 人工智能 惯性导航系统 均方误差 深度学习 计量单位 基本事实 卷积神经网络 计算机视觉 惯性参考系 工程类 数学 航空航天工程 统计 物理 量子力学
作者
Eslam Mounier,Paulo Ricardo Marques de Araujo,Mohamed Elhabiby,Michael J. Korenberg,Aboelmagd Noureldin
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting
标识
DOI:10.33012/2023.19273
摘要

Inertial Navigation System (INS) is a primary component in various integrated navigation systems. However, the performance of INS is hindered due to the numerical integration of the measurements obtained from the Inertial Measurement Unit (IMU), which are contaminated by various sensor errors, especially with Micro-Electro-Mechanical Systems (MEMS) sensors. To address these challenges, we examine the performance of modern Deep Learning (DL) methods for mitigating such errors. Specifically, we propose a Deep Gyroscope Error (DGE) model designed to estimate and compensate for errors in the gyroscope measurements. The DGE model combines the feature extraction capabilities of a Convolutional Neural Network (CNN) with the sequential data modelling strengths of Long Short-Term Memory (LSTM). Instead of relying on high-grade IMU measurements, we distinctively employ an inverse mechanization algorithm that generates artificial IMU measurements from the integrated navigation solution states. This approach provides accurate ground truth data facilitating direct supervised learning. The proposed model was trained and verified using real data from MEMS-IMU on real road test experiments performed on a land vehicle in Kingston, Ontario, Canada. When subjected to evaluation against unseen data, the DGE model demonstrated significant improvements in standalone inertial navigation scenarios, particularly in mitigating attitude drift errors and subsequently improving position estimation. Over a uniform testing interval, the DGE model achieved an average reduction in attitude RMSE by 43.1% and in position RMSE by 25.4%. This emphasizes the efficacy of the proposed method in improving INS performance, particularly when operating in standalone mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天发布了新的文献求助10
刚刚
刚刚
1秒前
揣一袋星星糖完成签到,获得积分10
1秒前
王阳完成签到,获得积分20
1秒前
shinn发布了新的文献求助10
2秒前
Ranch0完成签到,获得积分10
2秒前
2秒前
开心快乐水完成签到 ,获得积分10
3秒前
领导范儿应助动听凌柏采纳,获得10
3秒前
眯眯眼的松鼠完成签到,获得积分10
3秒前
FashionBoy应助安输采纳,获得10
3秒前
4秒前
坦率导师sw完成签到,获得积分10
4秒前
lzy发布了新的文献求助10
4秒前
五六七完成签到,获得积分10
4秒前
田様应助有害学术辣鸡采纳,获得10
5秒前
5秒前
5秒前
陌人归完成签到 ,获得积分10
6秒前
专注雨珍完成签到,获得积分10
6秒前
wy.he应助结实大雁采纳,获得10
7秒前
7秒前
科研通AI6.1应助鲜艳的遥采纳,获得10
7秒前
彭新铭完成签到,获得积分10
7秒前
Charles_Rowan发布了新的文献求助10
7秒前
科目三应助阿皓要发nature采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
草莓熊发布了新的文献求助10
8秒前
无花果应助wmzskye采纳,获得10
8秒前
SciGPT应助MOMO采纳,获得10
8秒前
Xin完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
Hello应助zzt采纳,获得10
10秒前
Herisland发布了新的文献求助10
10秒前
su发布了新的文献求助10
10秒前
科研通AI6.1应助richael采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776395
求助须知:如何正确求助?哪些是违规求助? 5629084
关于积分的说明 15442414
捐赠科研通 4908542
什么是DOI,文献DOI怎么找? 2641276
邀请新用户注册赠送积分活动 1589232
关于科研通互助平台的介绍 1543882