Exploring the Benefits of Deep Learning-Based Sensors Error Estimation for Improved Attitude and Position Accuracy

惯性测量装置 陀螺仪 计算机科学 人工智能 惯性导航系统 均方误差 深度学习 计量单位 基本事实 卷积神经网络 计算机视觉 惯性参考系 工程类 数学 航空航天工程 统计 物理 量子力学
作者
Eslam Mounier,Paulo Ricardo Marques de Araujo,Mohamed Elhabiby,Michael J. Korenberg,Aboelmagd Noureldin
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting
标识
DOI:10.33012/2023.19273
摘要

Inertial Navigation System (INS) is a primary component in various integrated navigation systems. However, the performance of INS is hindered due to the numerical integration of the measurements obtained from the Inertial Measurement Unit (IMU), which are contaminated by various sensor errors, especially with Micro-Electro-Mechanical Systems (MEMS) sensors. To address these challenges, we examine the performance of modern Deep Learning (DL) methods for mitigating such errors. Specifically, we propose a Deep Gyroscope Error (DGE) model designed to estimate and compensate for errors in the gyroscope measurements. The DGE model combines the feature extraction capabilities of a Convolutional Neural Network (CNN) with the sequential data modelling strengths of Long Short-Term Memory (LSTM). Instead of relying on high-grade IMU measurements, we distinctively employ an inverse mechanization algorithm that generates artificial IMU measurements from the integrated navigation solution states. This approach provides accurate ground truth data facilitating direct supervised learning. The proposed model was trained and verified using real data from MEMS-IMU on real road test experiments performed on a land vehicle in Kingston, Ontario, Canada. When subjected to evaluation against unseen data, the DGE model demonstrated significant improvements in standalone inertial navigation scenarios, particularly in mitigating attitude drift errors and subsequently improving position estimation. Over a uniform testing interval, the DGE model achieved an average reduction in attitude RMSE by 43.1% and in position RMSE by 25.4%. This emphasizes the efficacy of the proposed method in improving INS performance, particularly when operating in standalone mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微微发布了新的文献求助10
刚刚
千里江山一只蝇完成签到,获得积分10
刚刚
健壮的蘑菇完成签到,获得积分10
1秒前
舍瓦完成签到,获得积分10
2秒前
夏老师完成签到,获得积分10
2秒前
Monica发布了新的文献求助10
3秒前
4秒前
4秒前
lin完成签到,获得积分10
5秒前
善学以致用应助孤独的匕采纳,获得10
5秒前
隐形曼青应助边疆采纳,获得10
5秒前
吕吕完成签到,获得积分10
6秒前
6秒前
852应助健壮的蘑菇采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
yan完成签到,获得积分10
7秒前
8秒前
迷人冥完成签到 ,获得积分10
9秒前
夏老师发布了新的文献求助10
9秒前
9秒前
科研通AI6应助xuan采纳,获得10
10秒前
HBin完成签到,获得积分10
10秒前
11秒前
yan发布了新的文献求助10
12秒前
meteor完成签到 ,获得积分10
13秒前
赘婿应助兔子吃胡萝卜采纳,获得10
13秒前
vivre223发布了新的文献求助10
13秒前
14秒前
lzm发布了新的文献求助10
14秒前
科研宝完成签到,获得积分10
15秒前
17秒前
17秒前
18秒前
兔子吃胡萝卜完成签到,获得积分10
19秒前
19秒前
夏侯德东完成签到,获得积分10
19秒前
Monica完成签到,获得积分20
19秒前
19秒前
大模型应助枫asaki采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860