Exploring the Benefits of Deep Learning-Based Sensors Error Estimation for Improved Attitude and Position Accuracy

惯性测量装置 陀螺仪 计算机科学 人工智能 惯性导航系统 均方误差 深度学习 计量单位 基本事实 卷积神经网络 计算机视觉 惯性参考系 工程类 数学 航空航天工程 统计 物理 量子力学
作者
Eslam Mounier,Paulo Ricardo Marques de Araujo,Mohamed Elhabiby,Michael J. Korenberg,Aboelmagd Noureldin
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting
标识
DOI:10.33012/2023.19273
摘要

Inertial Navigation System (INS) is a primary component in various integrated navigation systems. However, the performance of INS is hindered due to the numerical integration of the measurements obtained from the Inertial Measurement Unit (IMU), which are contaminated by various sensor errors, especially with Micro-Electro-Mechanical Systems (MEMS) sensors. To address these challenges, we examine the performance of modern Deep Learning (DL) methods for mitigating such errors. Specifically, we propose a Deep Gyroscope Error (DGE) model designed to estimate and compensate for errors in the gyroscope measurements. The DGE model combines the feature extraction capabilities of a Convolutional Neural Network (CNN) with the sequential data modelling strengths of Long Short-Term Memory (LSTM). Instead of relying on high-grade IMU measurements, we distinctively employ an inverse mechanization algorithm that generates artificial IMU measurements from the integrated navigation solution states. This approach provides accurate ground truth data facilitating direct supervised learning. The proposed model was trained and verified using real data from MEMS-IMU on real road test experiments performed on a land vehicle in Kingston, Ontario, Canada. When subjected to evaluation against unseen data, the DGE model demonstrated significant improvements in standalone inertial navigation scenarios, particularly in mitigating attitude drift errors and subsequently improving position estimation. Over a uniform testing interval, the DGE model achieved an average reduction in attitude RMSE by 43.1% and in position RMSE by 25.4%. This emphasizes the efficacy of the proposed method in improving INS performance, particularly when operating in standalone mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白兔发布了新的文献求助10
1秒前
2秒前
美好凝莲发布了新的文献求助10
2秒前
山楂看海完成签到,获得积分10
3秒前
炙热的若枫完成签到 ,获得积分10
4秒前
4秒前
黄丽发布了新的文献求助10
4秒前
华仔应助柏特瑞采纳,获得10
5秒前
思源应助云白采纳,获得10
6秒前
6秒前
DR完成签到,获得积分10
7秒前
ranjiao发布了新的文献求助10
7秒前
搜集达人应助。。采纳,获得10
7秒前
WLLLR完成签到 ,获得积分10
8秒前
pluto应助旭_采纳,获得10
8秒前
奈何完成签到,获得积分10
8秒前
8秒前
卡皮巴拉发布了新的文献求助10
9秒前
9秒前
Finian完成签到,获得积分10
10秒前
隐形曼青应助是漏漏呀采纳,获得10
11秒前
asd关闭了asd文献求助
12秒前
非凡梦完成签到,获得积分10
12秒前
12秒前
12秒前
朝文奕发布了新的文献求助10
14秒前
张奎应助美好凝莲采纳,获得10
14秒前
14秒前
小马甲应助134采纳,获得10
14秒前
14秒前
lulu驳回了Orange应助
16秒前
。。完成签到,获得积分20
16秒前
Heather发布了新的文献求助10
16秒前
脑洞疼应助Zzzzz采纳,获得10
16秒前
小蘑菇应助十一采纳,获得10
16秒前
长情的不言完成签到,获得积分10
16秒前
17秒前
1953发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458698
求助须知:如何正确求助?哪些是违规求助? 3053476
关于积分的说明 9036705
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504506
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694494