亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the Benefits of Deep Learning-Based Sensors Error Estimation for Improved Attitude and Position Accuracy

惯性测量装置 陀螺仪 计算机科学 人工智能 惯性导航系统 均方误差 深度学习 计量单位 基本事实 卷积神经网络 计算机视觉 惯性参考系 工程类 数学 航空航天工程 统计 物理 量子力学
作者
Eslam Mounier,Paulo Ricardo Marques de Araujo,Mohamed Elhabiby,Michael J. Korenberg,Aboelmagd Noureldin
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting
标识
DOI:10.33012/2023.19273
摘要

Inertial Navigation System (INS) is a primary component in various integrated navigation systems. However, the performance of INS is hindered due to the numerical integration of the measurements obtained from the Inertial Measurement Unit (IMU), which are contaminated by various sensor errors, especially with Micro-Electro-Mechanical Systems (MEMS) sensors. To address these challenges, we examine the performance of modern Deep Learning (DL) methods for mitigating such errors. Specifically, we propose a Deep Gyroscope Error (DGE) model designed to estimate and compensate for errors in the gyroscope measurements. The DGE model combines the feature extraction capabilities of a Convolutional Neural Network (CNN) with the sequential data modelling strengths of Long Short-Term Memory (LSTM). Instead of relying on high-grade IMU measurements, we distinctively employ an inverse mechanization algorithm that generates artificial IMU measurements from the integrated navigation solution states. This approach provides accurate ground truth data facilitating direct supervised learning. The proposed model was trained and verified using real data from MEMS-IMU on real road test experiments performed on a land vehicle in Kingston, Ontario, Canada. When subjected to evaluation against unseen data, the DGE model demonstrated significant improvements in standalone inertial navigation scenarios, particularly in mitigating attitude drift errors and subsequently improving position estimation. Over a uniform testing interval, the DGE model achieved an average reduction in attitude RMSE by 43.1% and in position RMSE by 25.4%. This emphasizes the efficacy of the proposed method in improving INS performance, particularly when operating in standalone mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大医仁心完成签到 ,获得积分10
8秒前
CipherSage应助Penny采纳,获得10
10秒前
21秒前
Penny完成签到,获得积分10
21秒前
Penny发布了新的文献求助10
25秒前
盈盈发布了新的文献求助10
27秒前
woxinyouyou完成签到,获得积分0
34秒前
meeteryu完成签到,获得积分10
36秒前
SciGPT应助盈盈采纳,获得10
38秒前
持卿应助科研通管家采纳,获得10
58秒前
持卿应助科研通管家采纳,获得10
58秒前
持卿应助科研通管家采纳,获得10
58秒前
持卿应助科研通管家采纳,获得10
59秒前
狂野丹翠应助科研通管家采纳,获得10
59秒前
Wone3完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
Alisha完成签到,获得积分10
1分钟前
1分钟前
1分钟前
jjy发布了新的文献求助30
1分钟前
jjy完成签到,获得积分10
1分钟前
duoduo完成签到,获得积分10
2分钟前
2分钟前
wl发布了新的文献求助20
2分钟前
Kun应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得20
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
CC完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
程晓研完成签到 ,获得积分10
4分钟前
lovelife完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
烟花应助清秀翠风采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160