Exploring the Benefits of Deep Learning-Based Sensors Error Estimation for Improved Attitude and Position Accuracy

惯性测量装置 陀螺仪 计算机科学 人工智能 惯性导航系统 均方误差 深度学习 计量单位 基本事实 卷积神经网络 计算机视觉 惯性参考系 工程类 数学 航空航天工程 统计 物理 量子力学
作者
Eslam Mounier,Paulo Ricardo Marques de Araujo,Mohamed Elhabiby,Michael J. Korenberg,Aboelmagd Noureldin
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting
标识
DOI:10.33012/2023.19273
摘要

Inertial Navigation System (INS) is a primary component in various integrated navigation systems. However, the performance of INS is hindered due to the numerical integration of the measurements obtained from the Inertial Measurement Unit (IMU), which are contaminated by various sensor errors, especially with Micro-Electro-Mechanical Systems (MEMS) sensors. To address these challenges, we examine the performance of modern Deep Learning (DL) methods for mitigating such errors. Specifically, we propose a Deep Gyroscope Error (DGE) model designed to estimate and compensate for errors in the gyroscope measurements. The DGE model combines the feature extraction capabilities of a Convolutional Neural Network (CNN) with the sequential data modelling strengths of Long Short-Term Memory (LSTM). Instead of relying on high-grade IMU measurements, we distinctively employ an inverse mechanization algorithm that generates artificial IMU measurements from the integrated navigation solution states. This approach provides accurate ground truth data facilitating direct supervised learning. The proposed model was trained and verified using real data from MEMS-IMU on real road test experiments performed on a land vehicle in Kingston, Ontario, Canada. When subjected to evaluation against unseen data, the DGE model demonstrated significant improvements in standalone inertial navigation scenarios, particularly in mitigating attitude drift errors and subsequently improving position estimation. Over a uniform testing interval, the DGE model achieved an average reduction in attitude RMSE by 43.1% and in position RMSE by 25.4%. This emphasizes the efficacy of the proposed method in improving INS performance, particularly when operating in standalone mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzppp发布了新的文献求助10
刚刚
小马甲应助蓝色的梦采纳,获得10
刚刚
刚刚
科研通AI5应助小周采纳,获得20
刚刚
jj完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
别抢我的虾滑完成签到,获得积分10
2秒前
3秒前
ZC发布了新的文献求助10
3秒前
神明完成签到,获得积分10
4秒前
苻人英发布了新的文献求助10
4秒前
虫虫发布了新的文献求助10
4秒前
shopping发布了新的文献求助20
4秒前
善学以致用应助刘雄伟采纳,获得10
5秒前
研友_VZG7GZ应助wzppp采纳,获得10
5秒前
K9999K发布了新的文献求助10
5秒前
5秒前
6秒前
Chen完成签到,获得积分10
6秒前
李健应助威武的绿草采纳,获得10
6秒前
彳亍不是踟蹰完成签到,获得积分10
6秒前
005发布了新的文献求助10
7秒前
Geminiwod完成签到,获得积分10
7秒前
8秒前
脑洞疼应助学术纣王采纳,获得10
8秒前
王哒哒发布了新的文献求助10
8秒前
8秒前
JamesPei应助伶俐的万天采纳,获得10
9秒前
meng完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
温柔发卡发布了新的文献求助10
10秒前
10秒前
10秒前
怕孤单的曼凡完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
浮游应助可爱邓邓采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885604
求助须知:如何正确求助?哪些是违规求助? 4170370
关于积分的说明 12941471
捐赠科研通 3931146
什么是DOI,文献DOI怎么找? 2156910
邀请新用户注册赠送积分活动 1175305
关于科研通互助平台的介绍 1079897