Exploring the Benefits of Deep Learning-Based Sensors Error Estimation for Improved Attitude and Position Accuracy

惯性测量装置 陀螺仪 计算机科学 人工智能 惯性导航系统 均方误差 深度学习 计量单位 基本事实 卷积神经网络 计算机视觉 惯性参考系 工程类 数学 航空航天工程 统计 物理 量子力学
作者
Eslam Mounier,Paulo Ricardo Marques de Araujo,Mohamed Elhabiby,Michael J. Korenberg,Aboelmagd Noureldin
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting
标识
DOI:10.33012/2023.19273
摘要

Inertial Navigation System (INS) is a primary component in various integrated navigation systems. However, the performance of INS is hindered due to the numerical integration of the measurements obtained from the Inertial Measurement Unit (IMU), which are contaminated by various sensor errors, especially with Micro-Electro-Mechanical Systems (MEMS) sensors. To address these challenges, we examine the performance of modern Deep Learning (DL) methods for mitigating such errors. Specifically, we propose a Deep Gyroscope Error (DGE) model designed to estimate and compensate for errors in the gyroscope measurements. The DGE model combines the feature extraction capabilities of a Convolutional Neural Network (CNN) with the sequential data modelling strengths of Long Short-Term Memory (LSTM). Instead of relying on high-grade IMU measurements, we distinctively employ an inverse mechanization algorithm that generates artificial IMU measurements from the integrated navigation solution states. This approach provides accurate ground truth data facilitating direct supervised learning. The proposed model was trained and verified using real data from MEMS-IMU on real road test experiments performed on a land vehicle in Kingston, Ontario, Canada. When subjected to evaluation against unseen data, the DGE model demonstrated significant improvements in standalone inertial navigation scenarios, particularly in mitigating attitude drift errors and subsequently improving position estimation. Over a uniform testing interval, the DGE model achieved an average reduction in attitude RMSE by 43.1% and in position RMSE by 25.4%. This emphasizes the efficacy of the proposed method in improving INS performance, particularly when operating in standalone mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助Lucky采纳,获得10
2秒前
2秒前
舒服的忆南完成签到,获得积分10
2秒前
忧虑的靖巧完成签到 ,获得积分10
3秒前
补药发布了新的文献求助10
3秒前
星期八的小马完成签到,获得积分10
3秒前
科研通AI6应助lihaifeng采纳,获得10
4秒前
4秒前
小羊琳发布了新的文献求助10
5秒前
谢傲安发布了新的文献求助10
5秒前
wanci应助辛夷采纳,获得10
6秒前
瓜瓜发布了新的文献求助10
7秒前
7秒前
后海发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
JamesPei应助补药采纳,获得10
10秒前
谢傲安完成签到,获得积分10
11秒前
Owen应助bu拿下PHD绝不回头采纳,获得10
12秒前
12秒前
sansan完成签到,获得积分10
13秒前
13秒前
123发布了新的文献求助10
14秒前
蕴蝶发布了新的文献求助10
14秒前
15秒前
17秒前
xmuchem发布了新的文献求助10
17秒前
婧婧发布了新的文献求助10
18秒前
Lucky发布了新的文献求助10
19秒前
在水一方应助cc采纳,获得10
20秒前
20秒前
20秒前
22秒前
22秒前
辛夷发布了新的文献求助10
22秒前
SciGPT应助chengxiong采纳,获得10
23秒前
mmain发布了新的文献求助10
24秒前
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687