Over-the-Air Federated Transfer Learning Over UAV Swarm for Automatic Modulation Recognition in V2X Radio Monitoring

学习迁移 计算机科学 数据传输 灵活性(工程) 节点(物理) 频道(广播) 传输(电信) 认知无线电 实时计算 过程(计算) 人工智能 计算机网络 无线 工程类 电信 统计 数学 结构工程 操作系统
作者
Quan Zhou,Sheng Wu,Chunxiao Jiang,Ronghui Zhang,Xiaojun Jing
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3597-3607 被引量:5
标识
DOI:10.1109/tvt.2023.3324505
摘要

The increasing number of smart vehicles is leading to an increasing scarcity of spectrum resources for the internet of vehicles (IoV), which has given rise to an urgent requirement for automatic modulation classification (AMC) in cognitive radio (CR) systems. Meanwhile, for the flexibility of unmanned aerial vehicles (UAVs), the AMC implemented based on UAVs is considered an effective method to achieve reliable communication between intelligent vehicles. However, for distributed UAV task implementation, real-time radio data needs to be transmitted between UAVs and a cloud server. This process requires maintaining a high-capacity, secure channel environment, which is difficult to accomplish. In this paper, we propose a federated transfer learning framework to implement AMC in a distributed scenario, which avoids radio data transmission in each UAV. To reduce data dependence, the pre-trained deep learning (DL)-based model is sent to each UAV node and performs transfer learning, which brings more focused learning of the channel environment in which various UAVs are located. The simulation results show that federated transfer learning-based AMC offers better recognition accuracy than centralized approach. Compared to the centralized training methods, the federated transfer learning algorithm achieves an improvement of 1.04% to 12.05% in classification accuracy for each node with less training data. Besides, the effect of different fine-tuning layers on the accuracy is investigated, showing that fine-tuning three layers could achieve optimal accuracy. Additionally, different numbers of UAVs are employed to verify the impact on the results. The experimental results show that the number of UAVs can improve the results but to a limited extent. Furthermore, we evaluate the proposed method by various measurements, such as accuracy, precision, and F1-score. Accordingly, compared with the baseline methods, the proposed scheme achieves an improvement of 1% to 14% over them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助何仁宇采纳,获得10
刚刚
sansan完成签到 ,获得积分10
1秒前
Baozi完成签到,获得积分20
2秒前
2秒前
洁净的酬海完成签到 ,获得积分10
3秒前
3秒前
5秒前
未雨发布了新的文献求助10
8秒前
lala完成签到,获得积分10
9秒前
常常应助move采纳,获得10
9秒前
科研通AI2S应助何仁宇采纳,获得10
13秒前
13秒前
Kk完成签到,获得积分10
14秒前
CodeCraft应助hehe采纳,获得10
14秒前
15秒前
18秒前
呆萌小珍发布了新的文献求助10
18秒前
赵泳行完成签到,获得积分10
20秒前
20秒前
等我吃胖发布了新的文献求助10
21秒前
22秒前
烟花应助学术辉采纳,获得10
22秒前
22秒前
韩soso发布了新的文献求助10
23秒前
25秒前
25秒前
starleo发布了新的文献求助10
26秒前
Orange应助自然白安采纳,获得10
27秒前
27秒前
28秒前
万能图书馆应助六线采纳,获得30
31秒前
32秒前
书蠹诗魔发布了新的文献求助10
32秒前
桐桐应助椰子水采纳,获得10
32秒前
852应助糊涂的大象采纳,获得10
32秒前
32秒前
解惑发布了新的文献求助10
33秒前
34秒前
linlin发布了新的文献求助10
37秒前
还单身的绮梅完成签到,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437