Over-the-Air Federated Transfer Learning Over UAV Swarm for Automatic Modulation Recognition in V2X Radio Monitoring

学习迁移 计算机科学 数据传输 灵活性(工程) 节点(物理) 频道(广播) 传输(电信) 认知无线电 实时计算 过程(计算) 人工智能 计算机网络 无线 工程类 电信 操作系统 统计 结构工程 数学
作者
Quan Zhou,Sheng Wu,Chunxiao Jiang,Ronghui Zhang,Xiaojun Jing
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3597-3607 被引量:5
标识
DOI:10.1109/tvt.2023.3324505
摘要

The increasing number of smart vehicles is leading to an increasing scarcity of spectrum resources for the internet of vehicles (IoV), which has given rise to an urgent requirement for automatic modulation classification (AMC) in cognitive radio (CR) systems. Meanwhile, for the flexibility of unmanned aerial vehicles (UAVs), the AMC implemented based on UAVs is considered an effective method to achieve reliable communication between intelligent vehicles. However, for distributed UAV task implementation, real-time radio data needs to be transmitted between UAVs and a cloud server. This process requires maintaining a high-capacity, secure channel environment, which is difficult to accomplish. In this paper, we propose a federated transfer learning framework to implement AMC in a distributed scenario, which avoids radio data transmission in each UAV. To reduce data dependence, the pre-trained deep learning (DL)-based model is sent to each UAV node and performs transfer learning, which brings more focused learning of the channel environment in which various UAVs are located. The simulation results show that federated transfer learning-based AMC offers better recognition accuracy than centralized approach. Compared to the centralized training methods, the federated transfer learning algorithm achieves an improvement of 1.04% to 12.05% in classification accuracy for each node with less training data. Besides, the effect of different fine-tuning layers on the accuracy is investigated, showing that fine-tuning three layers could achieve optimal accuracy. Additionally, different numbers of UAVs are employed to verify the impact on the results. The experimental results show that the number of UAVs can improve the results but to a limited extent. Furthermore, we evaluate the proposed method by various measurements, such as accuracy, precision, and F1-score. Accordingly, compared with the baseline methods, the proposed scheme achieves an improvement of 1% to 14% over them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
梦茵发布了新的文献求助10
1秒前
qwe31533完成签到,获得积分10
1秒前
zyf发布了新的文献求助10
2秒前
2秒前
张子怡完成签到,获得积分10
5秒前
5秒前
logic完成签到 ,获得积分10
6秒前
ZZZ发布了新的文献求助10
6秒前
ceeray23发布了新的文献求助200
6秒前
量子星尘发布了新的文献求助10
7秒前
mumu完成签到,获得积分10
7秒前
yyy完成签到,获得积分10
8秒前
李爱国应助瓜子采纳,获得10
8秒前
sonder完成签到,获得积分10
9秒前
9秒前
sonder发布了新的文献求助10
12秒前
12秒前
包容的听南给包容的听南的求助进行了留言
13秒前
咔什么嚓发布了新的文献求助10
13秒前
16秒前
大个应助阿治采纳,获得10
16秒前
TTQ发布了新的文献求助10
17秒前
17秒前
18秒前
缓慢盼兰完成签到,获得积分20
18秒前
20秒前
潋滟发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
kls发布了新的文献求助10
22秒前
22秒前
23秒前
Lsmile给Lsmile的求助进行了留言
24秒前
25秒前
25秒前
迪卢克完成签到,获得积分10
26秒前
27秒前
清风发布了新的文献求助10
27秒前
无花果应助Jzhaoc580采纳,获得20
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112522
求助须知:如何正确求助?哪些是违规求助? 4320288
关于积分的说明 13461592
捐赠科研通 4151430
什么是DOI,文献DOI怎么找? 2274746
邀请新用户注册赠送积分活动 1276648
关于科研通互助平台的介绍 1214763