Over-the-Air Federated Transfer Learning Over UAV Swarm for Automatic Modulation Recognition in V2X Radio Monitoring

学习迁移 计算机科学 数据传输 灵活性(工程) 节点(物理) 频道(广播) 传输(电信) 认知无线电 实时计算 过程(计算) 人工智能 计算机网络 无线 工程类 电信 统计 数学 结构工程 操作系统
作者
Quan Zhou,Sheng Wu,Chunxiao Jiang,Ronghui Zhang,Xiaojun Jing
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3597-3607 被引量:5
标识
DOI:10.1109/tvt.2023.3324505
摘要

The increasing number of smart vehicles is leading to an increasing scarcity of spectrum resources for the internet of vehicles (IoV), which has given rise to an urgent requirement for automatic modulation classification (AMC) in cognitive radio (CR) systems. Meanwhile, for the flexibility of unmanned aerial vehicles (UAVs), the AMC implemented based on UAVs is considered an effective method to achieve reliable communication between intelligent vehicles. However, for distributed UAV task implementation, real-time radio data needs to be transmitted between UAVs and a cloud server. This process requires maintaining a high-capacity, secure channel environment, which is difficult to accomplish. In this paper, we propose a federated transfer learning framework to implement AMC in a distributed scenario, which avoids radio data transmission in each UAV. To reduce data dependence, the pre-trained deep learning (DL)-based model is sent to each UAV node and performs transfer learning, which brings more focused learning of the channel environment in which various UAVs are located. The simulation results show that federated transfer learning-based AMC offers better recognition accuracy than centralized approach. Compared to the centralized training methods, the federated transfer learning algorithm achieves an improvement of 1.04% to 12.05% in classification accuracy for each node with less training data. Besides, the effect of different fine-tuning layers on the accuracy is investigated, showing that fine-tuning three layers could achieve optimal accuracy. Additionally, different numbers of UAVs are employed to verify the impact on the results. The experimental results show that the number of UAVs can improve the results but to a limited extent. Furthermore, we evaluate the proposed method by various measurements, such as accuracy, precision, and F1-score. Accordingly, compared with the baseline methods, the proposed scheme achieves an improvement of 1% to 14% over them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
刚刚
yar应助科研通管家采纳,获得10
刚刚
han应助科研通管家采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
han应助科研通管家采纳,获得10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
FIN应助科研通管家采纳,获得30
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
dochx完成签到,获得积分10
3秒前
zzx完成签到,获得积分10
3秒前
茜茜哥哥发布了新的文献求助10
3秒前
4秒前
李智点完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
zzahyc发布了新的文献求助10
6秒前
6秒前
拉塞尔....完成签到,获得积分10
6秒前
7秒前
mengguzai发布了新的文献求助10
8秒前
pluto发布了新的文献求助10
8秒前
zzy完成签到,获得积分20
8秒前
mini发布了新的文献求助10
9秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049