Seeking an optimal approach for Computer-aided Diagnosis of Pulmonary Embolism

计算机辅助设计 深度学习 人工智能 卷积神经网络 变压器 计算机科学 混乱 肺栓塞 学习迁移 混淆矩阵 机器学习 模式识别(心理学) 医学 心脏病学 工程类 心理学 电气工程 电压 工程制图 精神分析
作者
Nahid Ul Islam,Zongwei Zhou,Shiv Gehlot,Michael B. Gotway,Jianming Liang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 102988-102988 被引量:9
标识
DOI:10.1016/j.media.2023.102988
摘要

Pulmonary Embolism (PE) represents a thrombus ("blood clot"), usually originating from a lower extremity vein, that travels to the blood vessels in the lung, causing vascular obstruction and in some patients death. This disorder is commonly diagnosed using Computed Tomography Pulmonary Angiography (CTPA). Deep learning holds great promise for the Computer-aided Diagnosis (CAD) of PE. However, numerous deep learning methods, such as Convolutional Neural Networks (CNN) and Transformer-based models, exist for a given task, causing great confusion regarding the development of CAD systems for PE. To address this confusion, we present a comprehensive analysis of competing deep learning methods applicable to PE diagnosis based on four datasets. First, we use the RSNA PE dataset, which includes (weak) slice-level and exam-level labels, for PE classification and diagnosis, respectively. At the slice level, we compare CNNs with the Vision Transformer (ViT) and the Swin Transformer. We also investigate the impact of self-supervised versus (fully) supervised ImageNet pre-training, and transfer learning over training models from scratch. Additionally, at the exam level, we compare sequence model learning with our proposed transformer-based architecture, Embedding-based ViT (E-ViT). For the second and third datasets, we utilize the CAD-PE Challenge Dataset and Ferdowsi University of Mashad's PE Dataset, where we convert (strong) clot-level masks into slice-level annotations to evaluate the optimal CNN model for slice-level PE classification. Finally, we use our in-house PE-CAD dataset, which contains (strong) clot-level masks. Here, we investigate the impact of our vessel-oriented image representations and self-supervised pre-training on PE false positive reduction at the clot level across image dimensions (2D, 2.5D, and 3D). Our experiments show that (1) transfer learning boosts performance despite differences between photographic images and CTPA scans; (2) self-supervised pre-training can surpass (fully) supervised pre-training; (3) transformer-based models demonstrate comparable performance but slower convergence compared with CNNs for slice-level PE classification; (4) model trained on the RSNA PE dataset demonstrates promising performance when tested on unseen datasets for slice-level PE classification; (5) our E-ViT framework excels in handling variable numbers of slices and outperforms sequence model learning for exam-level diagnosis; and (6) vessel-oriented image representation and self-supervised pre-training both enhance performance for PE false positive reduction across image dimensions. Our optimal approach surpasses state-of-the-art results on the RSNA PE dataset, enhancing AUC by 0.62% (slice-level) and 2.22% (exam-level). On our in-house PE-CAD dataset, 3D vessel-oriented images improve performance from 80.07% to 91.35%, a remarkable 11% gain. Codes are available at GitHub.com/JLiangLab/CAD_PE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动如脱兔发布了新的文献求助10
刚刚
starry完成签到,获得积分10
刚刚
1秒前
Grayball应助愉快的冰珍采纳,获得10
1秒前
1秒前
2秒前
Pangsj发布了新的文献求助10
2秒前
2秒前
2秒前
yzy完成签到,获得积分20
3秒前
4秒前
4秒前
Hang发布了新的文献求助10
4秒前
最初发布了新的文献求助10
5秒前
Lesile完成签到,获得积分10
5秒前
竹筏过海应助公西翠萱采纳,获得30
5秒前
5秒前
海子完成签到,获得积分10
6秒前
沉敛一生发布了新的文献求助10
6秒前
柏忆南完成签到 ,获得积分10
6秒前
li发布了新的文献求助10
6秒前
dldddz发布了新的文献求助10
6秒前
jimmy完成签到,获得积分10
6秒前
田様应助侦察兵采纳,获得10
6秒前
鑫渊完成签到,获得积分10
6秒前
天冷了hhhdh完成签到,获得积分10
7秒前
ting完成签到,获得积分10
7秒前
微笑完成签到,获得积分10
7秒前
可爱的函函应助西宁阿采纳,获得30
8秒前
蓝莓松饼发布了新的文献求助10
8秒前
9秒前
哈哈发布了新的文献求助10
9秒前
高高发布了新的文献求助10
9秒前
一拳一个小欧阳完成签到 ,获得积分10
9秒前
明雨天地完成签到,获得积分10
9秒前
deathmask完成签到 ,获得积分10
9秒前
老实志泽完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672