Seeking an optimal approach for Computer-aided Diagnosis of Pulmonary Embolism

计算机辅助设计 深度学习 人工智能 卷积神经网络 变压器 计算机科学 混乱 肺栓塞 学习迁移 混淆矩阵 机器学习 模式识别(心理学) 医学 心脏病学 工程类 精神分析 电压 电气工程 工程制图 心理学
作者
Nahid Ul Islam,Zongwei Zhou,Shiv Gehlot,Michael B. Gotway,Jianming Liang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 102988-102988 被引量:9
标识
DOI:10.1016/j.media.2023.102988
摘要

Pulmonary Embolism (PE) represents a thrombus ("blood clot"), usually originating from a lower extremity vein, that travels to the blood vessels in the lung, causing vascular obstruction and in some patients death. This disorder is commonly diagnosed using Computed Tomography Pulmonary Angiography (CTPA). Deep learning holds great promise for the Computer-aided Diagnosis (CAD) of PE. However, numerous deep learning methods, such as Convolutional Neural Networks (CNN) and Transformer-based models, exist for a given task, causing great confusion regarding the development of CAD systems for PE. To address this confusion, we present a comprehensive analysis of competing deep learning methods applicable to PE diagnosis based on four datasets. First, we use the RSNA PE dataset, which includes (weak) slice-level and exam-level labels, for PE classification and diagnosis, respectively. At the slice level, we compare CNNs with the Vision Transformer (ViT) and the Swin Transformer. We also investigate the impact of self-supervised versus (fully) supervised ImageNet pre-training, and transfer learning over training models from scratch. Additionally, at the exam level, we compare sequence model learning with our proposed transformer-based architecture, Embedding-based ViT (E-ViT). For the second and third datasets, we utilize the CAD-PE Challenge Dataset and Ferdowsi University of Mashad's PE Dataset, where we convert (strong) clot-level masks into slice-level annotations to evaluate the optimal CNN model for slice-level PE classification. Finally, we use our in-house PE-CAD dataset, which contains (strong) clot-level masks. Here, we investigate the impact of our vessel-oriented image representations and self-supervised pre-training on PE false positive reduction at the clot level across image dimensions (2D, 2.5D, and 3D). Our experiments show that (1) transfer learning boosts performance despite differences between photographic images and CTPA scans; (2) self-supervised pre-training can surpass (fully) supervised pre-training; (3) transformer-based models demonstrate comparable performance but slower convergence compared with CNNs for slice-level PE classification; (4) model trained on the RSNA PE dataset demonstrates promising performance when tested on unseen datasets for slice-level PE classification; (5) our E-ViT framework excels in handling variable numbers of slices and outperforms sequence model learning for exam-level diagnosis; and (6) vessel-oriented image representation and self-supervised pre-training both enhance performance for PE false positive reduction across image dimensions. Our optimal approach surpasses state-of-the-art results on the RSNA PE dataset, enhancing AUC by 0.62% (slice-level) and 2.22% (exam-level). On our in-house PE-CAD dataset, 3D vessel-oriented images improve performance from 80.07% to 91.35%, a remarkable 11% gain. Codes are available at GitHub.com/JLiangLab/CAD_PE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ABCofMEDICIBE发布了新的文献求助10
1秒前
星辰大海应助凉凉盛夏采纳,获得10
1秒前
bkagyin应助大意的豌豆采纳,获得10
1秒前
豚骨拉面发布了新的文献求助10
1秒前
终澈发布了新的文献求助10
1秒前
椒盐发布了新的文献求助10
2秒前
2秒前
2秒前
学术小天才完成签到,获得积分10
3秒前
somin应助鬼笔环肽采纳,获得10
3秒前
XHH1994发布了新的文献求助10
4秒前
黄超完成签到,获得积分20
4秒前
wyd驳回了赘婿应助
4秒前
5秒前
CR7应助sophia采纳,获得20
5秒前
5秒前
qwer发布了新的文献求助10
5秒前
5秒前
牛牛牛应助Ldq采纳,获得10
6秒前
6秒前
7秒前
我先睡了发布了新的文献求助10
7秒前
在水一方应助wmufwd采纳,获得10
7秒前
7秒前
Lumos发布了新的文献求助10
7秒前
花傲天的小狗完成签到,获得积分10
8秒前
NewAlex完成签到,获得积分10
8秒前
8秒前
Jasper应助黄超采纳,获得10
9秒前
独特思卉关注了科研通微信公众号
9秒前
10秒前
11秒前
cc发布了新的文献求助10
11秒前
wind发布了新的文献求助10
12秒前
田様应助晨晨采纳,获得10
12秒前
Zkxxxx应助我先睡了采纳,获得10
12秒前
12秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958814
求助须知:如何正确求助?哪些是违规求助? 3505069
关于积分的说明 11121961
捐赠科研通 3236515
什么是DOI,文献DOI怎么找? 1788844
邀请新用户注册赠送积分活动 871413
科研通“疑难数据库(出版商)”最低求助积分说明 802742