数学
阿利效应
中央歧管
李雅普诺夫指数
离散时间和连续时间
倍周期分岔
应用数学
分叉
参数统计
固定点
混乱的
分岔理论
控制理论(社会学)
非线性系统
数学分析
霍普夫分叉
控制(管理)
统计
人口学
物理
管理
量子力学
人工智能
社会学
计算机科学
经济
人口
出处
期刊:Hacettepe journal of mathematics and statistics
[Hacettepe Journal of Mathematics and Statistics]
日期:2023-08-01
卷期号:52 (4): 1029-1045
被引量:1
标识
DOI:10.15672/hujms.1179682
摘要
In this study, a discrete-time prey-predator model based on the Allee effect is presented. We examine the parametric conditions for the local asymptotic stability of the fixed points of this model. Furthermore, with the use of the center manifold theorem and bifurcation theory, we analyze the existence and directions of period-doubling and Neimark-Sacker bifurcations. The plots of maximum Lyapunov exponents provide indications of complexity and chaotic behavior. The feedback control approach is presented to stabilize the unstable fixed point. Numerical simulations are performed to support the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI