亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SAR model for accurate detection of multi-label arrhythmias from electrocardiograms

计算机科学 人工智能 预处理器 F1得分 机器学习 模式识别(心理学) 深度学习 数据挖掘
作者
Liuyang Yang,Yaqing Zheng,Zhimin Liu,Rui Tang,Libing Ma,Yu Chen,Ting Zhang,Wei Li
出处
期刊:Heliyon [Elsevier]
卷期号:9 (11): e21627-e21627 被引量:1
标识
DOI:10.1016/j.heliyon.2023.e21627
摘要

Arrhythmias are prevalent symptoms of cardiovascular disease, necessitating accurate and timely detection to mitigate associated risks. Detecting arrhythmias from ECGs quickly and accurately holds great significance in preventing heart disease and reducing mortality. This research endeavors to outperform previous studies by developing a scientific neural network model capable of training and predicting ECG signals for 11 categories of arrhythmias, accounting for up to 5 co-existing labels.In this study, we initially address the issue of imbalanced datasets by employing Borderline SMOTE and Cluster Centroids techniques during preprocessing. Subsequently, we propose a novel SAR model that combines attention and resnet mechanisms. The dataset is subjected to a 10-fold validation process to train and evaluate the model. Finally, several metrics such as HammingLoss, RankingLoss, F1-score, AUC and Coverage are used to evaluate the model.By evaluating the results of the tests, the average Hamming Loss is 1.12 %, the average Ranking Loss is 1.17 %, the average Micro F1-score is 98.46 %, the average Micro AUC is 98.76 %, and the average Coverage is 3.2762. The results show that the SAR model outperforms previous related studies on the task of classifying arrhythmia signals with multiple categories and labels.The SAR model demonstrated excellent performance in accurately classifying multi-category and multi-label arrhythmia signals, affirming its scientific validity. Compared with previous studies, the model achieves a certain improvement in performance, which can help cardiologists to achieve scientific and accurate diagnosis of arrhythmia diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
24秒前
dww完成签到,获得积分10
24秒前
xueying6767发布了新的文献求助10
30秒前
Hello应助科研通管家采纳,获得10
37秒前
jason完成签到,获得积分0
44秒前
orixero应助爱听歌笑寒采纳,获得10
1分钟前
1分钟前
1分钟前
Aaaaaa瘾发布了新的文献求助10
1分钟前
1分钟前
怡然的友容完成签到 ,获得积分10
1分钟前
朱朱子完成签到 ,获得积分10
1分钟前
科研通AI2S应助晏紫苏采纳,获得10
1分钟前
1分钟前
阿尼亚发布了新的文献求助10
1分钟前
s1lence完成签到,获得积分10
1分钟前
哒哒哒完成签到 ,获得积分10
2分钟前
土豆泥拌土豆块完成签到 ,获得积分10
2分钟前
morena应助科研通管家采纳,获得20
2分钟前
Aaaaaa瘾发布了新的文献求助10
2分钟前
英俊的铭应助Aaaaaa瘾采纳,获得10
2分钟前
隐形曼青应助喵喵采纳,获得30
3分钟前
hm发布了新的文献求助10
3分钟前
Jennifer完成签到 ,获得积分10
3分钟前
hookie完成签到 ,获得积分10
3分钟前
绵绵完成签到 ,获得积分10
3分钟前
淡然语山发布了新的文献求助20
3分钟前
3分钟前
Aaaaaa瘾发布了新的文献求助10
3分钟前
科研通AI2S应助飘逸慕灵采纳,获得30
4分钟前
午见千山应助hm采纳,获得10
4分钟前
hm完成签到,获得积分20
4分钟前
Owen应助有热心愿意采纳,获得10
4分钟前
4分钟前
FashionBoy应助fleeper采纳,获得10
4分钟前
喵喵发布了新的文献求助30
4分钟前
喵喵完成签到,获得积分10
4分钟前
Tuesday完成签到 ,获得积分10
4分钟前
xuhanghang完成签到,获得积分10
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795241
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301468
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146