Transcriptome‐level discovery of survival‐associated biomarkers and therapy targets in non‐small‐cell lung cancer

肺癌 转录组 肿瘤科 癌症 生存分析 腺癌 可药性 医学 生物 生物信息学 内科学 基因 基因表达 遗传学
作者
Balázs Győrffy
出处
期刊:British Journal of Pharmacology [Wiley]
卷期号:181 (3): 362-374 被引量:97
标识
DOI:10.1111/bph.16257
摘要

Abstract Background and Purpose Survival rate of patients with lung cancer has increased by over 60% in the recent two decades. With longer survival, the identification of genes associated with survival has emerged as an issue of utmost importance to uncover the most promising biomarkers and therapeutic targets. Experimental Approach An integrated database was set up by combining multiple independent datasets with clinical data and transcriptome‐level gene expression measurements. Univariate and multivariate survival analyses were performed to identify genes with higher expression levels linked to shorter survival. The strongest genes were filtered to include only those with known druggability. Key Results The entire database includes 2852 tumour specimens from 17 independent cohorts. Of these, 2227 have overall survival data and 1256 samples have progression‐free survival time. The most significant genes associated with survival were MIF , UBC and B2M in lung adenocarcinoma and ANXA2 , CSNK2A2 and KRT18 in squamous cell carcinoma. We also aimed to reveal the best druggable targets in non‐smokers lung cancer. The three most promising hits in this cohort were MDK , THY1 and PADI2 . The established lung cancer cohort was added to the Kaplan–Meier plotter ( https://www.kmplot.com ) enabling the validation of future gene expression‐based biomarkers in both the present and yet unexamined subgroups of patients. Conclusions and Implications In this study, we established a comprehensive database of transcriptome‐level data for lung cancer. The database can be utilized to identify and rank the most promising biomarkers and therapeutic targets for different subtypes of lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得30
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
是木易呀应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
mmmio应助科研通管家采纳,获得20
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
DAWN发布了新的文献求助10
4秒前
4秒前
大鸡腿完成签到,获得积分10
5秒前
GOAT发布了新的文献求助10
7秒前
7秒前
滴滴滴发布了新的文献求助10
7秒前
SEEU完成签到,获得积分10
8秒前
mashibeo发布了新的文献求助30
9秒前
kevin完成签到,获得积分20
9秒前
9秒前
传奇3应助耍酷依玉采纳,获得10
10秒前
11秒前
shanjianjie应助Zqs采纳,获得10
12秒前
一朵大猩猩完成签到,获得积分10
12秒前
12秒前
13秒前
郝宝真发布了新的文献求助10
14秒前
16秒前
17秒前
kevin发布了新的文献求助10
17秒前
Orange应助GOAT采纳,获得10
18秒前
19秒前
天天发布了新的文献求助10
20秒前
小刺猬发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
hj完成签到,获得积分10
25秒前
我是老大应助Cheferr采纳,获得10
26秒前
26秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334447
求助须知:如何正确求助?哪些是违规求助? 2963653
关于积分的说明 8610845
捐赠科研通 2642632
什么是DOI,文献DOI怎么找? 1446831
科研通“疑难数据库(出版商)”最低求助积分说明 670421
邀请新用户注册赠送积分活动 658611