Towards Accurate Odor Identification and Effective Feature Learning With an AI-Empowered Electronic Nose

人工智能 电子鼻 计算机科学 卷积神经网络 特征提取 稳健性(进化) 模式识别(心理学) 机器学习 判别式 自编码 深度学习 生物化学 化学 基因
作者
Zhenyi Ye,Yaonian Li,Ruth Jin,Qiliang Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4735-4746 被引量:9
标识
DOI:10.1109/jiot.2023.3299555
摘要

The development of Internet-of-Thing technology and robotics can be significantly promoted to a higher level with a precise digital sense of odors. However, the detection and identification of diverse odors using electronic sensor systems pose significant challenges. Electronic nose (E-Nose) based on gas sensors provides a cost-effective solution to detect odors. While previous research has primarily focused on enhancing the discriminative capability of E-Noses through machine learning techniques, limited attention has been given to the quality of features extracted or learned from E-Nose data. This paper presents a comprehensive study of E-nose design, digital odor measurement, and feature analysis methods in classifying many different odors into distinctive digital signatures. Experimental investigations involved the construction of a novel E-Nose system with automated data processing capabilities, enabling the study and discrimination of various odors, including essential oils, coffee, and whiskey. In the realm of data analysis, multiple feature extraction methods were compared and evaluated including 1Dconvolutional autoencoder (C-AE) and 1D convolutional neural network (1D-CNN). Motivated by recent progress in representation learning within the realm of face recognition, particularly its proficiency in generating distinctive features within the angular space, an algorithm incorporating a 1D-CNN model complemented by ArcLoss was developed. This innovative approach resulted in an exceptional classification accuracy of 97.76%, demonstrating its robustness in identifying and distinguishing a complex array of odors originating from a variety of essential oils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小秦秦发布了新的文献求助10
1秒前
mufcyang完成签到,获得积分10
2秒前
思源应助重要的奇异果采纳,获得10
2秒前
3秒前
Liu应助23lk采纳,获得10
4秒前
科研通AI2S应助23lk采纳,获得10
4秒前
科研通AI2S应助23lk采纳,获得10
4秒前
脑洞疼应助23lk采纳,获得10
4秒前
4秒前
斑马发布了新的文献求助30
5秒前
sss完成签到,获得积分10
6秒前
7秒前
共享精神应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
无花果应助科研通管家采纳,获得10
9秒前
鸣笛应助科研通管家采纳,获得30
9秒前
9秒前
yw发布了新的文献求助10
10秒前
clinlinlinlin发布了新的文献求助10
10秒前
haha发布了新的文献求助10
11秒前
12秒前
13秒前
原野小年发布了新的文献求助10
13秒前
轻松傲薇完成签到 ,获得积分10
13秒前
15秒前
ding应助郑泽森采纳,获得10
16秒前
16秒前
322628发布了新的文献求助10
16秒前
17秒前
wu8577应助yw采纳,获得10
17秒前
笨笨完成签到,获得积分10
17秒前
18秒前
xinxin666发布了新的文献求助10
18秒前
科研助手6应助haha采纳,获得10
18秒前
IIIllIIIllI发布了新的文献求助30
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152