Towards Accurate Odor Identification and Effective Feature Learning With an AI-Empowered Electronic Nose

人工智能 电子鼻 计算机科学 卷积神经网络 特征提取 稳健性(进化) 模式识别(心理学) 机器学习 判别式 自编码 深度学习 生物化学 化学 基因
作者
Zhenyi Ye,Yaonian Li,Ruth Jin,Qiliang Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4735-4746 被引量:6
标识
DOI:10.1109/jiot.2023.3299555
摘要

The development of Internet-of-Thing technology and robotics can be significantly promoted to a higher level with a precise digital sense of odors. However, the detection and identification of diverse odors using electronic sensor systems pose significant challenges. Electronic nose (E-Nose) based on gas sensors provides a cost-effective solution to detect odors. While previous research has primarily focused on enhancing the discriminative capability of E-Noses through machine learning techniques, limited attention has been given to the quality of features extracted or learned from E-Nose data. This paper presents a comprehensive study of E-nose design, digital odor measurement, and feature analysis methods in classifying many different odors into distinctive digital signatures. Experimental investigations involved the construction of a novel E-Nose system with automated data processing capabilities, enabling the study and discrimination of various odors, including essential oils, coffee, and whiskey. In the realm of data analysis, multiple feature extraction methods were compared and evaluated including 1Dconvolutional autoencoder (C-AE) and 1D convolutional neural network (1D-CNN). Motivated by recent progress in representation learning within the realm of face recognition, particularly its proficiency in generating distinctive features within the angular space, an algorithm incorporating a 1D-CNN model complemented by ArcLoss was developed. This innovative approach resulted in an exceptional classification accuracy of 97.76%, demonstrating its robustness in identifying and distinguishing a complex array of odors originating from a variety of essential oils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助俏皮老四采纳,获得10
刚刚
刚刚
1秒前
1秒前
万能图书馆应助可怜风雨采纳,获得10
1秒前
1秒前
Ge发布了新的文献求助10
1秒前
昨天发布了新的文献求助10
1秒前
慕青应助h嘿采纳,获得10
1秒前
2秒前
SciGPT应助河马采纳,获得10
2秒前
2秒前
2秒前
睡觉做大梦完成签到 ,获得积分10
3秒前
星河长明完成签到,获得积分10
4秒前
bkagyin应助爱吃年糕采纳,获得10
5秒前
敏感的鼠标完成签到 ,获得积分10
5秒前
6秒前
6秒前
自然月饼发布了新的文献求助10
6秒前
6秒前
董小李发布了新的文献求助10
6秒前
维基百科完成签到,获得积分20
6秒前
7秒前
ZYC发布了新的文献求助10
7秒前
明月清风完成签到,获得积分10
8秒前
彩色石头完成签到,获得积分10
8秒前
科研牛马人完成签到,获得积分10
8秒前
维基百科发布了新的文献求助10
10秒前
所所应助怕黑访云采纳,获得10
10秒前
10秒前
易琚发布了新的文献求助10
10秒前
昵称发布了新的文献求助10
11秒前
领导范儿应助昨天采纳,获得10
11秒前
zhangzhen完成签到,获得积分10
11秒前
11秒前
枝桠完成签到,获得积分10
12秒前
yy完成签到,获得积分10
12秒前
俏皮老四完成签到,获得积分20
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123390
求助须知:如何正确求助?哪些是违规求助? 2773951
关于积分的说明 7720148
捐赠科研通 2429656
什么是DOI,文献DOI怎么找? 1290409
科研通“疑难数据库(出版商)”最低求助积分说明 621833
版权声明 600251