ARM-Net: Attention-guided residual multiscale CNN for multiclass brain tumor classification using MR images

计算机科学 过度拟合 判别式 人工智能 弹性网正则化 水准点(测量) 残余物 特征(语言学) 模式识别(心理学) 网(多面体) 深度学习 卷积神经网络 多类分类 机器学习 支持向量机 人工神经网络 数学 特征选择 算法 几何学 哲学 语言学 大地测量学 地理
作者
T. K. Dutta,Deepak Ranjan Nayak,Yudong Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105421-105421 被引量:15
标识
DOI:10.1016/j.bspc.2023.105421
摘要

Brain tumor is the deadliest type of cancer and has the lowest survival rate when compared with other cancers. Hence, timely detection of brain tumor is indispensable for patients to make better treatment plans, leading to improved life expectancy. However, accurate classification of different brain tumor types from MR images is challenging due to high inter-class similarities. Though deep learning architectures, mainly CNNs, have shown promising performance compared to traditional approaches, such models often demand huge parameters and lead to overfitting while dealing with limited training samples. Further, the state-of-the-art CNN models cannot capture the subtle lesion size and shape variations among different classes. To cope with these issues, in this paper, we propose an attention-based residual multiscale CNN called ARM-Net for multiclass brain tumor classification. In particular, we propose a lightweight residual multiscale CNN dubbed RM-Net to capture high-level feature representations at different receptive fields. Further, a lightweight global attention module (LGAM) is proposed to selectively learn more discriminative features. The LGAM is placed on the top of RM-Net and is introduced to capture wide-range feature dependencies. Experimental results on two benchmark datasets indicate the superiority of our ARM-Net over the state-of-the-art CNN architectures and existing methods. The ARM-Net achieves an accuracy of 96.64% and 97.11% on MBTD and BraTS 2020 dataset, respectively. The ablation studies, Grad-CAM, and Grad-CAM++ visualization results confirm the effectiveness of our proposed LGAM. In addition, our ARM-Net is lightweight, end-to-end learnable, and hence more suitable for real-time brain tumor classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amberzyc应助Double采纳,获得10
刚刚
xiaoluo完成签到 ,获得积分10
刚刚
浮游应助典雅又夏采纳,获得10
刚刚
刚刚
胡周瑜完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
77完成签到,获得积分20
2秒前
火龙果完成签到,获得积分10
3秒前
5秒前
feitian201861发布了新的文献求助10
5秒前
慕青应助11采纳,获得10
5秒前
6秒前
申燕婷完成签到 ,获得积分10
6秒前
深情的秋白完成签到 ,获得积分10
6秒前
无情思卉发布了新的文献求助10
6秒前
舒适的若云完成签到,获得积分20
7秒前
7秒前
8秒前
8秒前
CipherSage应助马小花花花儿采纳,获得10
8秒前
8秒前
muziyang完成签到,获得积分10
9秒前
星辰发布了新的文献求助10
9秒前
10秒前
充电宝应助LongSun采纳,获得10
10秒前
10秒前
10秒前
11秒前
思源应助啾啾采纳,获得10
11秒前
11秒前
12秒前
奋斗成风发布了新的文献求助10
12秒前
piglit发布了新的文献求助10
13秒前
13秒前
Bellona完成签到,获得积分10
13秒前
早早发布了新的文献求助10
13秒前
小鱼儿发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351663
求助须知:如何正确求助?哪些是违规求助? 4484642
关于积分的说明 13959937
捐赠科研通 4384271
什么是DOI,文献DOI怎么找? 2408898
邀请新用户注册赠送积分活动 1401448
关于科研通互助平台的介绍 1374928