ARM-Net: Attention-guided residual multiscale CNN for multiclass brain tumor classification using MR images

计算机科学 过度拟合 判别式 人工智能 弹性网正则化 水准点(测量) 残余物 特征(语言学) 模式识别(心理学) 网(多面体) 深度学习 卷积神经网络 多类分类 机器学习 支持向量机 人工神经网络 数学 特征选择 算法 几何学 哲学 语言学 大地测量学 地理
作者
T. K. Dutta,Deepak Ranjan Nayak,Yudong Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105421-105421 被引量:15
标识
DOI:10.1016/j.bspc.2023.105421
摘要

Brain tumor is the deadliest type of cancer and has the lowest survival rate when compared with other cancers. Hence, timely detection of brain tumor is indispensable for patients to make better treatment plans, leading to improved life expectancy. However, accurate classification of different brain tumor types from MR images is challenging due to high inter-class similarities. Though deep learning architectures, mainly CNNs, have shown promising performance compared to traditional approaches, such models often demand huge parameters and lead to overfitting while dealing with limited training samples. Further, the state-of-the-art CNN models cannot capture the subtle lesion size and shape variations among different classes. To cope with these issues, in this paper, we propose an attention-based residual multiscale CNN called ARM-Net for multiclass brain tumor classification. In particular, we propose a lightweight residual multiscale CNN dubbed RM-Net to capture high-level feature representations at different receptive fields. Further, a lightweight global attention module (LGAM) is proposed to selectively learn more discriminative features. The LGAM is placed on the top of RM-Net and is introduced to capture wide-range feature dependencies. Experimental results on two benchmark datasets indicate the superiority of our ARM-Net over the state-of-the-art CNN architectures and existing methods. The ARM-Net achieves an accuracy of 96.64% and 97.11% on MBTD and BraTS 2020 dataset, respectively. The ablation studies, Grad-CAM, and Grad-CAM++ visualization results confirm the effectiveness of our proposed LGAM. In addition, our ARM-Net is lightweight, end-to-end learnable, and hence more suitable for real-time brain tumor classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
前方盎然完成签到,获得积分10
刚刚
nanxi88完成签到,获得积分10
1秒前
1秒前
jiangnan发布了新的文献求助10
1秒前
NexusExplorer应助ooooodai采纳,获得10
2秒前
2秒前
桐桐应助丰富的浩阑采纳,获得10
2秒前
3秒前
思源应助张张采纳,获得10
3秒前
深情安青应助yc采纳,获得10
3秒前
nbnb完成签到,获得积分10
3秒前
搜集达人应助safsafdfasf采纳,获得10
3秒前
哈哈哈哈完成签到,获得积分10
3秒前
Lucas应助flymove采纳,获得10
3秒前
4秒前
完美世界应助happy采纳,获得10
4秒前
Jasper应助qq采纳,获得10
4秒前
Ephemerality完成签到 ,获得积分10
4秒前
春风完成签到,获得积分10
4秒前
慕青应助奋斗映寒采纳,获得10
4秒前
4秒前
小二郎应助沉默南露采纳,获得10
4秒前
PAPER发布了新的文献求助10
5秒前
5秒前
嗯嗯你说完成签到,获得积分10
6秒前
jojo发布了新的文献求助10
6秒前
徐志豪完成签到,获得积分20
6秒前
SciGPT应助长情笑柳采纳,获得10
6秒前
Shengkun完成签到,获得积分10
7秒前
7秒前
7秒前
小雨dida完成签到,获得积分10
8秒前
懒大王完成签到 ,获得积分10
8秒前
车车发布了新的文献求助10
8秒前
8秒前
客念完成签到 ,获得积分10
8秒前
Allen完成签到,获得积分10
9秒前
zhonglv7应助姜姜采纳,获得10
9秒前
张行发布了新的文献求助10
9秒前
yao完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665611
求助须知:如何正确求助?哪些是违规求助? 4877669
关于积分的说明 15114824
捐赠科研通 4824856
什么是DOI,文献DOI怎么找? 2582972
邀请新用户注册赠送积分活动 1536984
关于科研通互助平台的介绍 1495418