ARM-Net: Attention-guided residual multiscale CNN for multiclass brain tumor classification using MR images

计算机科学 过度拟合 判别式 人工智能 弹性网正则化 水准点(测量) 残余物 特征(语言学) 模式识别(心理学) 网(多面体) 深度学习 卷积神经网络 多类分类 机器学习 支持向量机 人工神经网络 数学 特征选择 算法 几何学 哲学 语言学 大地测量学 地理
作者
T. K. Dutta,Deepak Ranjan Nayak,Yudong Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105421-105421 被引量:15
标识
DOI:10.1016/j.bspc.2023.105421
摘要

Brain tumor is the deadliest type of cancer and has the lowest survival rate when compared with other cancers. Hence, timely detection of brain tumor is indispensable for patients to make better treatment plans, leading to improved life expectancy. However, accurate classification of different brain tumor types from MR images is challenging due to high inter-class similarities. Though deep learning architectures, mainly CNNs, have shown promising performance compared to traditional approaches, such models often demand huge parameters and lead to overfitting while dealing with limited training samples. Further, the state-of-the-art CNN models cannot capture the subtle lesion size and shape variations among different classes. To cope with these issues, in this paper, we propose an attention-based residual multiscale CNN called ARM-Net for multiclass brain tumor classification. In particular, we propose a lightweight residual multiscale CNN dubbed RM-Net to capture high-level feature representations at different receptive fields. Further, a lightweight global attention module (LGAM) is proposed to selectively learn more discriminative features. The LGAM is placed on the top of RM-Net and is introduced to capture wide-range feature dependencies. Experimental results on two benchmark datasets indicate the superiority of our ARM-Net over the state-of-the-art CNN architectures and existing methods. The ARM-Net achieves an accuracy of 96.64% and 97.11% on MBTD and BraTS 2020 dataset, respectively. The ablation studies, Grad-CAM, and Grad-CAM++ visualization results confirm the effectiveness of our proposed LGAM. In addition, our ARM-Net is lightweight, end-to-end learnable, and hence more suitable for real-time brain tumor classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑泽航发布了新的文献求助10
刚刚
小蘑菇应助HBY采纳,获得10
刚刚
llf完成签到 ,获得积分10
1秒前
LX完成签到,获得积分10
1秒前
科研通AI6.1应助online1881采纳,获得10
1秒前
一坨台台完成签到,获得积分10
2秒前
2秒前
大力元霜完成签到,获得积分10
2秒前
3秒前
牛牛超人发布了新的文献求助20
4秒前
7秒前
boyis完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
YR完成签到 ,获得积分10
10秒前
10秒前
10秒前
落寞剑成完成签到 ,获得积分10
11秒前
慕青应助WYN采纳,获得10
12秒前
12秒前
12秒前
温柔柜子发布了新的文献求助10
12秒前
14秒前
14秒前
Mito2009完成签到,获得积分10
14秒前
littleby发布了新的文献求助10
14秒前
sling116完成签到,获得积分10
16秒前
哈哈发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
阚曦完成签到,获得积分10
17秒前
Mito2009发布了新的文献求助10
17秒前
18秒前
追梦人完成签到,获得积分10
18秒前
顾矜应助sinlar采纳,获得10
20秒前
21秒前
ylkylk发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
online1881发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382