亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ARM-Net: Attention-guided residual multiscale CNN for multiclass brain tumor classification using MR images

计算机科学 过度拟合 判别式 人工智能 弹性网正则化 水准点(测量) 残余物 特征(语言学) 模式识别(心理学) 网(多面体) 深度学习 卷积神经网络 多类分类 机器学习 支持向量机 人工神经网络 数学 特征选择 算法 几何学 哲学 语言学 大地测量学 地理
作者
T. K. Dutta,Deepak Ranjan Nayak,Yudong Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105421-105421 被引量:15
标识
DOI:10.1016/j.bspc.2023.105421
摘要

Brain tumor is the deadliest type of cancer and has the lowest survival rate when compared with other cancers. Hence, timely detection of brain tumor is indispensable for patients to make better treatment plans, leading to improved life expectancy. However, accurate classification of different brain tumor types from MR images is challenging due to high inter-class similarities. Though deep learning architectures, mainly CNNs, have shown promising performance compared to traditional approaches, such models often demand huge parameters and lead to overfitting while dealing with limited training samples. Further, the state-of-the-art CNN models cannot capture the subtle lesion size and shape variations among different classes. To cope with these issues, in this paper, we propose an attention-based residual multiscale CNN called ARM-Net for multiclass brain tumor classification. In particular, we propose a lightweight residual multiscale CNN dubbed RM-Net to capture high-level feature representations at different receptive fields. Further, a lightweight global attention module (LGAM) is proposed to selectively learn more discriminative features. The LGAM is placed on the top of RM-Net and is introduced to capture wide-range feature dependencies. Experimental results on two benchmark datasets indicate the superiority of our ARM-Net over the state-of-the-art CNN architectures and existing methods. The ARM-Net achieves an accuracy of 96.64% and 97.11% on MBTD and BraTS 2020 dataset, respectively. The ablation studies, Grad-CAM, and Grad-CAM++ visualization results confirm the effectiveness of our proposed LGAM. In addition, our ARM-Net is lightweight, end-to-end learnable, and hence more suitable for real-time brain tumor classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gszy1975完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
18秒前
SciGPT应助务实的犀牛采纳,获得10
44秒前
冉亦完成签到,获得积分10
47秒前
1分钟前
yhw发布了新的文献求助10
1分钟前
Jay完成签到,获得积分10
1分钟前
空里叽哇完成签到,获得积分10
2分钟前
Hello应助杨杨采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
杨杨完成签到,获得积分20
3分钟前
犹豫绾绾完成签到 ,获得积分10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
光能使者完成签到 ,获得积分10
3分钟前
杨杨发布了新的文献求助10
3分钟前
guozizi应助阿米尔盼盼采纳,获得100
3分钟前
浮游应助阿米尔盼盼采纳,获得10
3分钟前
烟花应助阿米尔盼盼采纳,获得10
3分钟前
打打应助科研通管家采纳,获得30
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
研友_89Nm7L发布了新的文献求助10
7分钟前
7分钟前
wrl2023完成签到,获得积分10
7分钟前
研友_89Nm7L完成签到,获得积分10
7分钟前
7分钟前
9分钟前
发呆员发布了新的文献求助100
9分钟前
量子星尘发布了新的文献求助10
9分钟前
万能图书馆应助发呆员采纳,获得100
9分钟前
aa完成签到,获得积分20
9分钟前
kklkimo完成签到,获得积分10
10分钟前
aa发布了新的文献求助50
10分钟前
zouzou完成签到,获得积分20
11分钟前
11分钟前
脑洞疼应助科研通管家采纳,获得10
11分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668640
关于积分的说明 14771517
捐赠科研通 4613414
什么是DOI,文献DOI怎么找? 2530181
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516