ARM-Net: Attention-guided residual multiscale CNN for multiclass brain tumor classification using MR images

计算机科学 过度拟合 判别式 人工智能 弹性网正则化 水准点(测量) 残余物 特征(语言学) 模式识别(心理学) 网(多面体) 深度学习 卷积神经网络 多类分类 机器学习 支持向量机 人工神经网络 数学 特征选择 算法 几何学 哲学 语言学 大地测量学 地理
作者
T. K. Dutta,Deepak Ranjan Nayak,Yudong Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105421-105421 被引量:15
标识
DOI:10.1016/j.bspc.2023.105421
摘要

Brain tumor is the deadliest type of cancer and has the lowest survival rate when compared with other cancers. Hence, timely detection of brain tumor is indispensable for patients to make better treatment plans, leading to improved life expectancy. However, accurate classification of different brain tumor types from MR images is challenging due to high inter-class similarities. Though deep learning architectures, mainly CNNs, have shown promising performance compared to traditional approaches, such models often demand huge parameters and lead to overfitting while dealing with limited training samples. Further, the state-of-the-art CNN models cannot capture the subtle lesion size and shape variations among different classes. To cope with these issues, in this paper, we propose an attention-based residual multiscale CNN called ARM-Net for multiclass brain tumor classification. In particular, we propose a lightweight residual multiscale CNN dubbed RM-Net to capture high-level feature representations at different receptive fields. Further, a lightweight global attention module (LGAM) is proposed to selectively learn more discriminative features. The LGAM is placed on the top of RM-Net and is introduced to capture wide-range feature dependencies. Experimental results on two benchmark datasets indicate the superiority of our ARM-Net over the state-of-the-art CNN architectures and existing methods. The ARM-Net achieves an accuracy of 96.64% and 97.11% on MBTD and BraTS 2020 dataset, respectively. The ablation studies, Grad-CAM, and Grad-CAM++ visualization results confirm the effectiveness of our proposed LGAM. In addition, our ARM-Net is lightweight, end-to-end learnable, and hence more suitable for real-time brain tumor classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分20
1秒前
华仔应助一起去看海采纳,获得10
2秒前
乐乐应助郭子仪采纳,获得10
2秒前
HAOHAO发布了新的文献求助10
3秒前
隐形的雁完成签到,获得积分10
6秒前
只与你完成签到 ,获得积分10
7秒前
8秒前
传奇3应助怡然的扬采纳,获得10
9秒前
9秒前
一起去看海完成签到,获得积分20
9秒前
9秒前
ccm应助清脆琳采纳,获得10
9秒前
NexusExplorer应助果果采纳,获得10
10秒前
13秒前
xmhxpz发布了新的文献求助10
14秒前
DSFSD完成签到,获得积分10
17秒前
17秒前
进口小宵完成签到,获得积分10
19秒前
优秀藏鸟完成签到 ,获得积分10
21秒前
22秒前
泷生发布了新的文献求助10
22秒前
22秒前
23秒前
不配.应助MADAO采纳,获得200
23秒前
24秒前
三月完成签到,获得积分20
25秒前
cizzz发布了新的文献求助10
28秒前
果果发布了新的文献求助10
29秒前
29秒前
29秒前
Criminology34应助nadeem采纳,获得10
31秒前
英俊的铭应助Tom47采纳,获得10
31秒前
33秒前
王小茗发布了新的文献求助10
34秒前
暗中讨饭完成签到,获得积分10
35秒前
Vincent发布了新的文献求助10
36秒前
科研通AI6应助长大水果采纳,获得10
36秒前
37秒前
等待冰之完成签到 ,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432