ARM-Net: Attention-guided residual multiscale CNN for multiclass brain tumor classification using MR images

计算机科学 过度拟合 判别式 人工智能 弹性网正则化 水准点(测量) 残余物 特征(语言学) 模式识别(心理学) 网(多面体) 深度学习 卷积神经网络 多类分类 机器学习 支持向量机 人工神经网络 数学 特征选择 算法 几何学 哲学 语言学 大地测量学 地理
作者
T. K. Dutta,Deepak Ranjan Nayak,Yudong Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105421-105421 被引量:15
标识
DOI:10.1016/j.bspc.2023.105421
摘要

Brain tumor is the deadliest type of cancer and has the lowest survival rate when compared with other cancers. Hence, timely detection of brain tumor is indispensable for patients to make better treatment plans, leading to improved life expectancy. However, accurate classification of different brain tumor types from MR images is challenging due to high inter-class similarities. Though deep learning architectures, mainly CNNs, have shown promising performance compared to traditional approaches, such models often demand huge parameters and lead to overfitting while dealing with limited training samples. Further, the state-of-the-art CNN models cannot capture the subtle lesion size and shape variations among different classes. To cope with these issues, in this paper, we propose an attention-based residual multiscale CNN called ARM-Net for multiclass brain tumor classification. In particular, we propose a lightweight residual multiscale CNN dubbed RM-Net to capture high-level feature representations at different receptive fields. Further, a lightweight global attention module (LGAM) is proposed to selectively learn more discriminative features. The LGAM is placed on the top of RM-Net and is introduced to capture wide-range feature dependencies. Experimental results on two benchmark datasets indicate the superiority of our ARM-Net over the state-of-the-art CNN architectures and existing methods. The ARM-Net achieves an accuracy of 96.64% and 97.11% on MBTD and BraTS 2020 dataset, respectively. The ablation studies, Grad-CAM, and Grad-CAM++ visualization results confirm the effectiveness of our proposed LGAM. In addition, our ARM-Net is lightweight, end-to-end learnable, and hence more suitable for real-time brain tumor classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果发布了新的文献求助10
1秒前
小艳胡发布了新的文献求助10
1秒前
1秒前
鹿子完成签到 ,获得积分10
1秒前
1秒前
1秒前
zJx丶发布了新的文献求助10
2秒前
desperado完成签到 ,获得积分10
3秒前
榜一大哥的负担完成签到 ,获得积分10
3秒前
奈何人生发布了新的文献求助10
3秒前
3秒前
Yang完成签到,获得积分10
3秒前
冰冰完成签到,获得积分20
4秒前
wufel完成签到,获得积分10
4秒前
JKJ发布了新的文献求助10
4秒前
121发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
李健应助张润泽采纳,获得10
6秒前
IETPer发布了新的文献求助10
6秒前
6秒前
欣喜访旋发布了新的文献求助10
6秒前
7秒前
汉堡包应助ouyggg采纳,获得10
7秒前
冰冰发布了新的文献求助10
7秒前
背后的桐发布了新的文献求助10
8秒前
小二郎应助lzx采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
昏睡的蟠桃应助杨旭采纳,获得100
10秒前
Change_Jing完成签到,获得积分10
10秒前
10秒前
沉海发布了新的文献求助30
11秒前
11秒前
杭啊发布了新的文献求助10
12秒前
曾经电源完成签到,获得积分10
13秒前
hx完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635