A Combined Model Integrating Radiomics and Deep Learning Based on Contrast-Enhanced CT for Preoperative Staging of Laryngeal Carcinoma

无线电技术 人工智能 医学 放射科 试验装置 阶段(地层学) 特征(语言学) 计算机科学 机器学习 古生物学 语言学 哲学 生物
作者
Xinwei Chen,Qiang Yu,Juan Peng,Zhiyang He,Quanjiang Li,Youquan Ning,Jinming Gu,Fajin Lv,Huan Jiang,Kai Xie
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 3022-3031 被引量:5
标识
DOI:10.1016/j.acra.2023.06.029
摘要

Accurate staging of laryngeal carcinoma can inform appropriate treatment decision-making. We developed a radiomics model, a deep learning (DL) model, and a combined model (incorporating radiomics features and DL features) based on the venous-phase CT images and explored the performance of these models in stratifying patients with laryngeal carcinoma into stage I-II and stage III-IV, and also compared these models with radiologists.Three hundreds and nineteen patients with pathologically confirmed laryngeal carcinoma were randomly divided into a training set (n = 223) and a test set (n = 96). In the training set, the radiomics features with inter- and intraclass correlation coefficients (ICCs)> 0.75 were screened by Spearman correlation analysis and recursive feature elimination (RFE); then support vector machine (SVM) classifier was applied to develop the radiomics model. The DL model was built using ResNet 18 by the cropped 2D regions of interest (ROIs) in the maximum tumor ROI slices and the last fully connected layer of this network served as the DL feature extractor. Finally, a combined model was developed by pooling the radiomics features and extracted DL features to predict the staging.The area under the curves (AUCs) for radiomics model, DL model, and combined model in the test set were 0.704 (95% confidence interval [CI]: 0.588-0.820), 0.724 (95% CI: 0.613-0.835), and 0.849 (95% CI: 0.755-0.943), respectively. The combined model outperformed the radiomics model and the DL model in discriminating stage I-II from stage III-IV (p = 0.031 and p = 0.020, respectively). Only the combined model performed significantly better than radiologists (p < 0.050 for both).The combined model can help tailor the therapeutic strategy for laryngeal carcinoma patients by enabling more accurate preoperative staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助帅关采纳,获得10
刚刚
qin完成签到,获得积分10
1秒前
1秒前
流浪小诗人完成签到,获得积分10
1秒前
3秒前
知性的觅露完成签到,获得积分10
3秒前
朱湋帆完成签到 ,获得积分10
3秒前
devil发布了新的文献求助10
4秒前
乐乐应助咸鱼一号采纳,获得10
5秒前
7秒前
youjiang完成签到,获得积分10
7秒前
devil完成签到,获得积分10
7秒前
8秒前
8秒前
舞拽拽完成签到 ,获得积分10
10秒前
sunaijia完成签到,获得积分0
10秒前
雪白雍发布了新的文献求助10
10秒前
XiangXu完成签到,获得积分10
11秒前
guajiguaji发布了新的文献求助10
11秒前
11秒前
CipherSage应助liuq采纳,获得10
11秒前
优美的冰巧完成签到 ,获得积分10
12秒前
13秒前
13秒前
汤圆发布了新的文献求助50
13秒前
TT发布了新的文献求助10
14秒前
舒适的天奇完成签到 ,获得积分10
14秒前
YOLO完成签到 ,获得积分10
15秒前
刘奶奶的牛奶完成签到,获得积分10
16秒前
lio发布了新的文献求助10
18秒前
19秒前
19秒前
凝子老师发布了新的文献求助10
20秒前
白瓜完成签到 ,获得积分10
20秒前
123完成签到,获得积分10
22秒前
22秒前
斯文钢笔完成签到 ,获得积分10
23秒前
Hh发布了新的文献求助10
24秒前
司马天寿发布了新的文献求助10
25秒前
上官若男应助lio采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849