A Combined Model Integrating Radiomics and Deep Learning Based on Contrast-Enhanced CT for Preoperative Staging of Laryngeal Carcinoma

无线电技术 人工智能 医学 放射科 试验装置 阶段(地层学) 特征(语言学) 计算机科学 机器学习 古生物学 语言学 哲学 生物
作者
Xinwei Chen,Qiang Yu,Juan Peng,Zhiyang He,Quanjiang Li,Youquan Ning,Jinming Gu,Fajin Lv,Huan Jiang,Kai Xie
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 3022-3031 被引量:11
标识
DOI:10.1016/j.acra.2023.06.029
摘要

Accurate staging of laryngeal carcinoma can inform appropriate treatment decision-making. We developed a radiomics model, a deep learning (DL) model, and a combined model (incorporating radiomics features and DL features) based on the venous-phase CT images and explored the performance of these models in stratifying patients with laryngeal carcinoma into stage I-II and stage III-IV, and also compared these models with radiologists.Three hundreds and nineteen patients with pathologically confirmed laryngeal carcinoma were randomly divided into a training set (n = 223) and a test set (n = 96). In the training set, the radiomics features with inter- and intraclass correlation coefficients (ICCs)> 0.75 were screened by Spearman correlation analysis and recursive feature elimination (RFE); then support vector machine (SVM) classifier was applied to develop the radiomics model. The DL model was built using ResNet 18 by the cropped 2D regions of interest (ROIs) in the maximum tumor ROI slices and the last fully connected layer of this network served as the DL feature extractor. Finally, a combined model was developed by pooling the radiomics features and extracted DL features to predict the staging.The area under the curves (AUCs) for radiomics model, DL model, and combined model in the test set were 0.704 (95% confidence interval [CI]: 0.588-0.820), 0.724 (95% CI: 0.613-0.835), and 0.849 (95% CI: 0.755-0.943), respectively. The combined model outperformed the radiomics model and the DL model in discriminating stage I-II from stage III-IV (p = 0.031 and p = 0.020, respectively). Only the combined model performed significantly better than radiologists (p < 0.050 for both).The combined model can help tailor the therapeutic strategy for laryngeal carcinoma patients by enabling more accurate preoperative staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然柚子发布了新的文献求助10
刚刚
搜集达人应助key采纳,获得10
1秒前
科研通AI2S应助拥挤而独行采纳,获得10
2秒前
迷途羔羊发布了新的文献求助10
2秒前
2秒前
小白发布了新的文献求助10
3秒前
1205114938发布了新的文献求助10
3秒前
3秒前
3秒前
丘比特应助zydf采纳,获得10
4秒前
4秒前
一YI完成签到,获得积分20
4秒前
FSX639163发布了新的文献求助10
4秒前
雨桐发布了新的文献求助10
4秒前
5秒前
脑洞疼应助西海岸的风采纳,获得10
5秒前
小蘑菇应助TUTU采纳,获得10
5秒前
贪玩南蕾完成签到,获得积分10
5秒前
优美的书雪完成签到,获得积分20
6秒前
6秒前
7秒前
未央完成签到,获得积分10
7秒前
情怀应助高兴的又菡采纳,获得10
7秒前
8秒前
橘子味汽水完成签到 ,获得积分20
8秒前
牛肉汉堡完成签到,获得积分10
9秒前
好货分享发布了新的文献求助30
10秒前
11秒前
ANK应助Rosaline采纳,获得10
11秒前
朝暮完成签到 ,获得积分10
12秒前
12秒前
LL完成签到 ,获得积分10
12秒前
13秒前
Guo发布了新的文献求助10
13秒前
13秒前
xiaorain完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
mxr完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329293
求助须知:如何正确求助?哪些是违规求助? 4468822
关于积分的说明 13906962
捐赠科研通 4361865
什么是DOI,文献DOI怎么找? 2396049
邀请新用户注册赠送积分活动 1389427
关于科研通互助平台的介绍 1360272