A Combined Model Integrating Radiomics and Deep Learning Based on Contrast-Enhanced CT for Preoperative Staging of Laryngeal Carcinoma

无线电技术 人工智能 医学 放射科 试验装置 阶段(地层学) 特征(语言学) 计算机科学 机器学习 古生物学 语言学 哲学 生物
作者
Xinwei Chen,Qiang Yu,Juan Peng,Zhiyang He,Quanjiang Li,Youquan Ning,Jinming Gu,Fajin Lv,Huan Jiang,Kai Xie
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 3022-3031 被引量:11
标识
DOI:10.1016/j.acra.2023.06.029
摘要

Accurate staging of laryngeal carcinoma can inform appropriate treatment decision-making. We developed a radiomics model, a deep learning (DL) model, and a combined model (incorporating radiomics features and DL features) based on the venous-phase CT images and explored the performance of these models in stratifying patients with laryngeal carcinoma into stage I-II and stage III-IV, and also compared these models with radiologists.Three hundreds and nineteen patients with pathologically confirmed laryngeal carcinoma were randomly divided into a training set (n = 223) and a test set (n = 96). In the training set, the radiomics features with inter- and intraclass correlation coefficients (ICCs)> 0.75 were screened by Spearman correlation analysis and recursive feature elimination (RFE); then support vector machine (SVM) classifier was applied to develop the radiomics model. The DL model was built using ResNet 18 by the cropped 2D regions of interest (ROIs) in the maximum tumor ROI slices and the last fully connected layer of this network served as the DL feature extractor. Finally, a combined model was developed by pooling the radiomics features and extracted DL features to predict the staging.The area under the curves (AUCs) for radiomics model, DL model, and combined model in the test set were 0.704 (95% confidence interval [CI]: 0.588-0.820), 0.724 (95% CI: 0.613-0.835), and 0.849 (95% CI: 0.755-0.943), respectively. The combined model outperformed the radiomics model and the DL model in discriminating stage I-II from stage III-IV (p = 0.031 and p = 0.020, respectively). Only the combined model performed significantly better than radiologists (p < 0.050 for both).The combined model can help tailor the therapeutic strategy for laryngeal carcinoma patients by enabling more accurate preoperative staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维生素完成签到 ,获得积分10
刚刚
naitao7发布了新的文献求助10
刚刚
sanben发布了新的文献求助20
刚刚
1秒前
Kaito发布了新的文献求助10
1秒前
憨憨发布了新的文献求助10
2秒前
ivylyu完成签到 ,获得积分10
2秒前
胡图图完成签到,获得积分10
2秒前
一二发布了新的文献求助10
3秒前
kk完成签到 ,获得积分10
3秒前
醉笙发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
6秒前
djbj2022发布了新的文献求助10
6秒前
希望天下0贩的0应助创创采纳,获得10
6秒前
善学以致用应助冬亦采纳,获得10
6秒前
7秒前
李健应助小凯采纳,获得10
7秒前
hsing完成签到,获得积分10
7秒前
wisdom完成签到,获得积分10
7秒前
8秒前
xiamu.发布了新的文献求助10
8秒前
9秒前
我想毕业发布了新的文献求助10
9秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
星辰大海应助科研欢采纳,获得10
15秒前
16秒前
笨笨完成签到,获得积分10
16秒前
为你比拟发布了新的文献求助10
16秒前
16秒前
17秒前
领导范儿应助sin采纳,获得10
17秒前
冬亦发布了新的文献求助10
17秒前
Jerry20184发布了新的文献求助10
19秒前
小二郎应助从容哈密瓜采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430695
求助须知:如何正确求助?哪些是违规求助? 4543745
关于积分的说明 14189043
捐赠科研通 4462220
什么是DOI,文献DOI怎么找? 2446443
邀请新用户注册赠送积分活动 1437819
关于科研通互助平台的介绍 1414530