A Combined Model Integrating Radiomics and Deep Learning Based on Contrast-Enhanced CT for Preoperative Staging of Laryngeal Carcinoma

无线电技术 人工智能 医学 放射科 试验装置 阶段(地层学) 特征(语言学) 计算机科学 机器学习 古生物学 语言学 哲学 生物
作者
Xinwei Chen,Qiang Yu,Juan Peng,Zhiyang He,Quanjiang Li,Youquan Ning,Jinming Gu,Fajin Lv,Huan Jiang,Kai Xie
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 3022-3031 被引量:3
标识
DOI:10.1016/j.acra.2023.06.029
摘要

Accurate staging of laryngeal carcinoma can inform appropriate treatment decision-making. We developed a radiomics model, a deep learning (DL) model, and a combined model (incorporating radiomics features and DL features) based on the venous-phase CT images and explored the performance of these models in stratifying patients with laryngeal carcinoma into stage I-II and stage III-IV, and also compared these models with radiologists.Three hundreds and nineteen patients with pathologically confirmed laryngeal carcinoma were randomly divided into a training set (n = 223) and a test set (n = 96). In the training set, the radiomics features with inter- and intraclass correlation coefficients (ICCs)> 0.75 were screened by Spearman correlation analysis and recursive feature elimination (RFE); then support vector machine (SVM) classifier was applied to develop the radiomics model. The DL model was built using ResNet 18 by the cropped 2D regions of interest (ROIs) in the maximum tumor ROI slices and the last fully connected layer of this network served as the DL feature extractor. Finally, a combined model was developed by pooling the radiomics features and extracted DL features to predict the staging.The area under the curves (AUCs) for radiomics model, DL model, and combined model in the test set were 0.704 (95% confidence interval [CI]: 0.588-0.820), 0.724 (95% CI: 0.613-0.835), and 0.849 (95% CI: 0.755-0.943), respectively. The combined model outperformed the radiomics model and the DL model in discriminating stage I-II from stage III-IV (p = 0.031 and p = 0.020, respectively). Only the combined model performed significantly better than radiologists (p < 0.050 for both).The combined model can help tailor the therapeutic strategy for laryngeal carcinoma patients by enabling more accurate preoperative staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mesome完成签到,获得积分10
1秒前
3秒前
4秒前
王森发布了新的文献求助10
5秒前
6秒前
tigger完成签到,获得积分10
8秒前
整齐妙梦发布了新的文献求助10
9秒前
田様应助稳重向南采纳,获得10
11秒前
12秒前
12秒前
YaHe发布了新的文献求助10
12秒前
科研通AI2S应助张宝采纳,获得10
13秒前
14秒前
cauliflower发布了新的文献求助10
17秒前
18秒前
遥远的尧应助科研通管家采纳,获得10
18秒前
tianzml0应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得20
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
成成发布了新的文献求助30
20秒前
20秒前
李健应助一指流沙采纳,获得10
20秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164351
求助须知:如何正确求助?哪些是违规求助? 2815193
关于积分的说明 7908079
捐赠科研通 2474802
什么是DOI,文献DOI怎么找? 1317676
科研通“疑难数据库(出版商)”最低求助积分说明 631925
版权声明 602234