A Combined Model Integrating Radiomics and Deep Learning Based on Contrast-Enhanced CT for Preoperative Staging of Laryngeal Carcinoma

无线电技术 人工智能 医学 放射科 试验装置 阶段(地层学) 特征(语言学) 计算机科学 机器学习 古生物学 语言学 哲学 生物
作者
Xinwei Chen,Qiang Yu,Juan Peng,Zhiyang He,Quanjiang Li,Youquan Ning,Jinming Gu,Fajin Lv,Huan Jiang,Kai Xie
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (12): 3022-3031 被引量:11
标识
DOI:10.1016/j.acra.2023.06.029
摘要

Accurate staging of laryngeal carcinoma can inform appropriate treatment decision-making. We developed a radiomics model, a deep learning (DL) model, and a combined model (incorporating radiomics features and DL features) based on the venous-phase CT images and explored the performance of these models in stratifying patients with laryngeal carcinoma into stage I-II and stage III-IV, and also compared these models with radiologists.Three hundreds and nineteen patients with pathologically confirmed laryngeal carcinoma were randomly divided into a training set (n = 223) and a test set (n = 96). In the training set, the radiomics features with inter- and intraclass correlation coefficients (ICCs)> 0.75 were screened by Spearman correlation analysis and recursive feature elimination (RFE); then support vector machine (SVM) classifier was applied to develop the radiomics model. The DL model was built using ResNet 18 by the cropped 2D regions of interest (ROIs) in the maximum tumor ROI slices and the last fully connected layer of this network served as the DL feature extractor. Finally, a combined model was developed by pooling the radiomics features and extracted DL features to predict the staging.The area under the curves (AUCs) for radiomics model, DL model, and combined model in the test set were 0.704 (95% confidence interval [CI]: 0.588-0.820), 0.724 (95% CI: 0.613-0.835), and 0.849 (95% CI: 0.755-0.943), respectively. The combined model outperformed the radiomics model and the DL model in discriminating stage I-II from stage III-IV (p = 0.031 and p = 0.020, respectively). Only the combined model performed significantly better than radiologists (p < 0.050 for both).The combined model can help tailor the therapeutic strategy for laryngeal carcinoma patients by enabling more accurate preoperative staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多米发布了新的文献求助10
1秒前
1秒前
刘泽玉完成签到,获得积分10
1秒前
chenbin1105完成签到,获得积分10
2秒前
Shengyuu完成签到 ,获得积分10
2秒前
3秒前
秀丽的羊青完成签到,获得积分10
3秒前
3秒前
小胡发布了新的文献求助10
4秒前
4秒前
丁一发布了新的文献求助30
4秒前
zcx970206完成签到,获得积分10
4秒前
清欢完成签到,获得积分10
4秒前
zhaowei完成签到,获得积分10
5秒前
Wanan完成签到,获得积分10
5秒前
酸酸发布了新的文献求助10
6秒前
小青椒应助科研通管家采纳,获得150
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
6秒前
丘比特应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
Hello应助机灵傲丝采纳,获得20
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得30
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
zzzqqq完成签到,获得积分10
8秒前
思源应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5166574
求助须知:如何正确求助?哪些是违规求助? 4358543
关于积分的说明 13570767
捐赠科研通 4205109
什么是DOI,文献DOI怎么找? 2306149
邀请新用户注册赠送积分活动 1305922
关于科研通互助平台的介绍 1252367