Predicting concrete strength through packing density using machine learning models

抗压强度 计算机科学 球形填料 骨料(复合) 原子堆积因子 材料科学 复合材料 结晶学 化学
作者
Pallapothu Swamy Naga Ratna Giri,Rathish Kumar Pancharathi,Rakesh Janib
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107177-107177 被引量:15
标识
DOI:10.1016/j.engappai.2023.107177
摘要

This study presents an innovative approach to predict concrete compressive strength using particle packing theories through machine learning techniques. The existing challenge in concrete engineering lies in the accurate estimation of concrete strength, a critical factor in construction. The adoption of particle packing theories, which hold great promise for enhancing concrete performance, has been limited due to the complexity and time-consuming nature of the required calculations. An approach encompassing particle packing models (JD Dewar Model, Compressible Packing Model, and Modified Toufar Model) with machine learning is the novelty of the work. These models optimize the packing density of aggregate proportions while minimizing the void ratio, essential for achieving desired compressive strength criteria. To train the model, a comprehensive dataset comprising 479 concrete mixtures, each associated with known compressive strength values relative to packing density, is utilized. A significant advancement in predicting concrete compressive strength is demonstrated by the results. The approach outperforms traditional empirical models, offering precise and reliable predictions based on packing density. Importantly, this innovation eliminates the need for time-consuming and costly trial-and-error procedures in concrete mix design. The strong performance of various models in predicting concrete strength using particle packing theories is underscored by the study, with R^2 values ranging from 0.664 to 0.999. By combining concepts of particle packing theories and machine learning, a more efficient and reliable method for predicting concrete compressive strength is achieved. This innovation has the potential to revolutionize concrete mix design, leading to more durable and cost-effective construction practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
辰勃发布了新的文献求助10
刚刚
喜悦的鬼神完成签到 ,获得积分10
1秒前
筱筱发布了新的文献求助10
2秒前
dacongming发布了新的文献求助200
4秒前
mimi完成签到,获得积分10
4秒前
12369发布了新的文献求助10
4秒前
bkagyin应助mumu采纳,获得20
5秒前
英姑应助wwt采纳,获得10
5秒前
6秒前
wanci应助一只小鲨鱼采纳,获得10
6秒前
树袋熊完成签到,获得积分10
6秒前
8秒前
9秒前
9秒前
科研通AI2S应助谦让月饼采纳,获得10
9秒前
10秒前
星星轨迹发布了新的文献求助10
10秒前
10秒前
HCLonely应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
猫咪老师应助科研通管家采纳,获得30
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
zho应助科研通管家采纳,获得50
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
HCLonely应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
方赫然应助科研通管家采纳,获得10
13秒前
jhgg8009应助科研通管家采纳,获得30
13秒前
华仔应助科研通管家采纳,获得10
13秒前
zho应助科研通管家采纳,获得10
13秒前
HCLonely应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
活力小夏应助科研通管家采纳,获得50
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242929
求助须知:如何正确求助?哪些是违规求助? 2887037
关于积分的说明 8245962
捐赠科研通 2555600
什么是DOI,文献DOI怎么找? 1383752
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625625