Predicting concrete strength through packing density using machine learning models

抗压强度 计算机科学 球形填料 骨料(复合) 原子堆积因子 材料科学 复合材料 结晶学 化学
作者
Pallapothu Swamy Naga Ratna Giri,Rathish Kumar Pancharathi,Rakesh Janib
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107177-107177 被引量:15
标识
DOI:10.1016/j.engappai.2023.107177
摘要

This study presents an innovative approach to predict concrete compressive strength using particle packing theories through machine learning techniques. The existing challenge in concrete engineering lies in the accurate estimation of concrete strength, a critical factor in construction. The adoption of particle packing theories, which hold great promise for enhancing concrete performance, has been limited due to the complexity and time-consuming nature of the required calculations. An approach encompassing particle packing models (JD Dewar Model, Compressible Packing Model, and Modified Toufar Model) with machine learning is the novelty of the work. These models optimize the packing density of aggregate proportions while minimizing the void ratio, essential for achieving desired compressive strength criteria. To train the model, a comprehensive dataset comprising 479 concrete mixtures, each associated with known compressive strength values relative to packing density, is utilized. A significant advancement in predicting concrete compressive strength is demonstrated by the results. The approach outperforms traditional empirical models, offering precise and reliable predictions based on packing density. Importantly, this innovation eliminates the need for time-consuming and costly trial-and-error procedures in concrete mix design. The strong performance of various models in predicting concrete strength using particle packing theories is underscored by the study, with R^2 values ranging from 0.664 to 0.999. By combining concepts of particle packing theories and machine learning, a more efficient and reliable method for predicting concrete compressive strength is achieved. This innovation has the potential to revolutionize concrete mix design, leading to more durable and cost-effective construction practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mk完成签到,获得积分10
刚刚
33发布了新的文献求助10
1秒前
优秀的芯完成签到,获得积分10
1秒前
1秒前
隐形曼青应助小透明采纳,获得10
2秒前
小姜发布了新的文献求助10
2秒前
yuan发布了新的文献求助10
2秒前
cenzy完成签到,获得积分10
2秒前
Ava应助1212采纳,获得10
2秒前
3秒前
研友_Z1eelZ发布了新的文献求助10
3秒前
Fanfan完成签到 ,获得积分10
3秒前
cc发布了新的文献求助10
3秒前
宓天问发布了新的文献求助10
3秒前
蔷薇之花发布了新的文献求助10
3秒前
Bizibili完成签到,获得积分10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得30
4秒前
领导范儿应助啊啊啊啊采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得30
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得20
5秒前
无花果应助科研通管家采纳,获得10
5秒前
TiO2完成签到 ,获得积分10
5秒前
所所应助科研通管家采纳,获得10
5秒前
CyrusSo524应助科研通管家采纳,获得10
5秒前
young应助科研通管家采纳,获得10
5秒前
Rondab应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
5秒前
研友_Y59785应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060