Predicting concrete strength through packing density using machine learning models

抗压强度 计算机科学 球形填料 骨料(复合) 原子堆积因子 材料科学 复合材料 结晶学 化学
作者
Pallapothu Swamy Naga Ratna Giri,Rathish Kumar Pancharathi,Rakesh Janib
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107177-107177 被引量:15
标识
DOI:10.1016/j.engappai.2023.107177
摘要

This study presents an innovative approach to predict concrete compressive strength using particle packing theories through machine learning techniques. The existing challenge in concrete engineering lies in the accurate estimation of concrete strength, a critical factor in construction. The adoption of particle packing theories, which hold great promise for enhancing concrete performance, has been limited due to the complexity and time-consuming nature of the required calculations. An approach encompassing particle packing models (JD Dewar Model, Compressible Packing Model, and Modified Toufar Model) with machine learning is the novelty of the work. These models optimize the packing density of aggregate proportions while minimizing the void ratio, essential for achieving desired compressive strength criteria. To train the model, a comprehensive dataset comprising 479 concrete mixtures, each associated with known compressive strength values relative to packing density, is utilized. A significant advancement in predicting concrete compressive strength is demonstrated by the results. The approach outperforms traditional empirical models, offering precise and reliable predictions based on packing density. Importantly, this innovation eliminates the need for time-consuming and costly trial-and-error procedures in concrete mix design. The strong performance of various models in predicting concrete strength using particle packing theories is underscored by the study, with R^2 values ranging from 0.664 to 0.999. By combining concepts of particle packing theories and machine learning, a more efficient and reliable method for predicting concrete compressive strength is achieved. This innovation has the potential to revolutionize concrete mix design, leading to more durable and cost-effective construction practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nhkun完成签到,获得积分10
1秒前
2秒前
sian完成签到,获得积分10
2秒前
小二郎应助小杨采纳,获得10
3秒前
demo完成签到,获得积分10
3秒前
jyzxzr完成签到,获得积分20
4秒前
情怀应助H1122采纳,获得10
4秒前
等效边界完成签到,获得积分10
5秒前
5秒前
我欲成粉绿完成签到,获得积分10
5秒前
5秒前
JoySue完成签到,获得积分20
5秒前
啦熊完成签到,获得积分10
5秒前
cui123完成签到 ,获得积分10
6秒前
DX完成签到 ,获得积分10
6秒前
辣椒酱发布了新的文献求助10
6秒前
钱砖家发布了新的文献求助10
6秒前
fffff完成签到,获得积分10
6秒前
yechengjie完成签到,获得积分10
7秒前
Cuz完成签到,获得积分10
7秒前
ZONG完成签到,获得积分10
7秒前
7秒前
shuang完成签到,获得积分10
8秒前
何为完成签到 ,获得积分10
8秒前
9秒前
虫虫发布了新的文献求助10
9秒前
9秒前
zhao完成签到,获得积分10
9秒前
CipherSage应助jyzxzr采纳,获得100
9秒前
思源应助Xiang Li采纳,获得10
9秒前
吴向宽完成签到,获得积分10
10秒前
高贵宛海完成签到,获得积分10
10秒前
猴猴完成签到,获得积分10
10秒前
jam完成签到,获得积分10
10秒前
SYLH应助彬墩墩采纳,获得10
10秒前
zhao完成签到,获得积分10
11秒前
钱砖家完成签到,获得积分10
11秒前
999999发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259