Application of artificial intelligence techniques for non-alcoholic fatty liver disease diagnosis: A systematic review (2005–2023)

脂肪性肝炎 脂肪肝 医学 脂肪变性 弹性成像 瞬态弹性成像 疾病 生物标志物 放射科 肝活检 病理 内科学 活检 超声波 生物化学 化学
作者
Hamed Zamanian,Ahmad Shalbaf,Mohammad Reza Zali,Ali Khalaj,Pooneh Dehghan,Mastaneh Rajabian Tabesh,Behzad Hatami,Roohallah Alizadehsani,Ru San Tan,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107932-107932 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107932
摘要

Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly growing incidence worldwide. For prognostication and therapeutic decisions, it is important to distinguish the pathological stages of NAFLD: steatosis, steatohepatitis, and liver fibrosis, which are definitively diagnosed on invasive biopsy. Non-invasive ultrasound (US) imaging, including US elastography technique, and clinical parameters can be used to diagnose and grade NAFLD and its complications. Artificial intelligence (AI) is increasingly being harnessed for developing NAFLD diagnostic models based on clinical, biomarker, or imaging data. In this work, we systemically reviewed the literature for AI-enabled NAFLD diagnostic models based on US (including elastography) and clinical (including serological) data. We performed a comprehensive search on Google Scholar, Scopus, and PubMed search engines for articles published between January 2005 and June 2023 related to AI models for NAFLD diagnosis based on US and/or clinical parameters using the following search terms: "non-alcoholic fatty liver disease", "non-alcoholic steatohepatitis", "deep learning", "machine learning", "artificial intelligence", "ultrasound imaging", "sonography", "clinical information". We reviewed 64 published models that used either US (including elastography) or clinical data input to detect the presence of NAFLD, non-alcoholic steatohepatitis, and/or fibrosis, and in some cases, the severity of steatosis, inflammation, and/or fibrosis as well. The performances of the published models were summarized, and stratified by data input and algorithms used, which could be broadly divided into machine and deep learning approaches. AI models based on US imaging and clinical data can reliably detect NAFLD and its complications, thereby reducing diagnostic costs and the need for invasive liver biopsy. The models offer advantages of efficiency, accuracy, and accessibility, and serve as virtual assistants for specialists to accelerate disease diagnosis and reduce treatment costs for patients and healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ghooor发布了新的文献求助10
1秒前
zhujiang发布了新的文献求助600
1秒前
1秒前
1秒前
SciGPT应助六件套采纳,获得10
1秒前
2秒前
小星云完成签到,获得积分20
2秒前
欢呼的茉莉完成签到 ,获得积分10
2秒前
田様应助shuanglin采纳,获得10
3秒前
翼静应助趙途嘵生采纳,获得10
5秒前
积极问晴发布了新的文献求助10
5秒前
可爱的函函应助lucas采纳,获得10
5秒前
6秒前
6秒前
yk发布了新的文献求助10
6秒前
6秒前
mumu应助初七采纳,获得30
6秒前
123完成签到,获得积分10
7秒前
ding应助gloria采纳,获得10
7秒前
嗯哼完成签到 ,获得积分10
7秒前
8R60d8应助Kirin采纳,获得20
7秒前
李爱国应助Kirin采纳,获得10
7秒前
36456657应助张斯瑞采纳,获得10
9秒前
wtzhang16发布了新的文献求助30
9秒前
积极问晴完成签到,获得积分10
9秒前
CodeCraft应助浮流少年采纳,获得10
9秒前
脑洞疼应助饱满不评采纳,获得10
10秒前
10秒前
Ava应助孟令涛采纳,获得10
11秒前
tx应助loin采纳,获得10
11秒前
红桃小六发布了新的文献求助10
11秒前
hunajx发布了新的文献求助10
11秒前
仙人殊恍惚应助赵赵赵采纳,获得10
12秒前
不配.应助HU采纳,获得10
12秒前
啦啦啦啦啦完成签到,获得积分10
13秒前
菠菜菜str完成签到,获得积分10
14秒前
ppprotein发布了新的文献求助10
14秒前
shuanglin发布了新的文献求助10
15秒前
Ghooor发布了新的文献求助10
16秒前
高分求助中
Earth System Geophysics 1000
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3205598
求助须知:如何正确求助?哪些是违规求助? 2854633
关于积分的说明 8095727
捐赠科研通 2519393
什么是DOI,文献DOI怎么找? 1352538
科研通“疑难数据库(出版商)”最低求助积分说明 641536
邀请新用户注册赠送积分活动 612536