Generative deep learning for probabilistic streamflow forecasting: Conditional variational auto-encoder

分位数 概率逻辑 概率预测 预测技巧 计量经济学 自编码 计算机科学 可靠性(半导体) 水准点(测量) 水流 一致性预测 统计 统计模型 点估计 条件概率分布 数学 机器学习 人工智能 深度学习 地理 流域 功率(物理) 物理 大地测量学 地图学 量子力学
作者
Mohammad Sina Jahangir,John Quilty
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:629: 130498-130498 被引量:5
标识
DOI:10.1016/j.jhydrol.2023.130498
摘要

Probabilistic hydrological forecasting has gained increasing importance in recent years, as it offers essential information for risk-based decision-making and flood management. Traditional hydrological models often produce deterministic forecasts, which do not account for the inherent uncertainties in hydrological systems. Although many previous studies have investigated using deep learning (DL) models for hydrological prediction, the development of probabilistic DL models (especially, generative models) has not yet been thoroughly examined for hydrological forecasting. The present study investigates the efficacy of a generative DL model, namely, conditional variational auto-encoder (CVAE). CVAE is applied for one-seven day(s) ahead probabilistic streamflow forecasting in 75 basins from the Canadian model parameter experiment (CANOPEX) database. The CVAE forecast model, which outputs forecasts in the form of a probability distribution, was benchmarked against two state-of-the-art quantile-based DL models: quantile-based encoder-decoder (ED) and quantile-based CVAE (QCVAE). The latter outputs forecasts for specific quantiles of a probability distribution (here, q = 0.05, 0.5, 0.95). More than 9000 models were developed based on different basins, input variable sets, and model structures. The models were evaluated in terms of point forecast accuracy and forecast reliability. The results indicate that the CVAE model generally outperforms the benchmark models in terms of reliability at a 90 % confidence level (median reliability of 92.49 % compared to 87.35 % and 84.59 % for ED and QCVAE, respectively). However, the quantile-based forecast models produce slightly more accurate point forecasts than the CVAE (median Kling-Gupta efficiency (KGE) of 0.88 compared to 0.90 for both ED and QCVAE). Notably, the CVAE model exhibits superior probabilistic forecasts in basins with poor point forecast accuracy, highlighting its usefulness over benchmark methods in difficult-to-forecast basins. Overall, CVAE is a promising probabilistic DL model for streamflow forecasting, and it can be readily applied for forecasting other hydrological variables (evapotranspiration, water level, etc.). The findings of this study provide a basis for future research on probabilistic forecasting of hydrological variables using generative DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健康快乐完成签到 ,获得积分10
2秒前
小马甲应助无奈雁山采纳,获得10
2秒前
路远发布了新的文献求助10
2秒前
2秒前
平常的擎宇完成签到,获得积分10
3秒前
大胖胖胖er完成签到,获得积分20
3秒前
3秒前
储物间发布了新的文献求助10
3秒前
陆千万发布了新的文献求助10
3秒前
123669应助xyy001采纳,获得50
4秒前
4秒前
123发布了新的文献求助30
6秒前
高兴水瑶发布了新的文献求助30
6秒前
慕青应助tulips采纳,获得10
6秒前
OCDer发布了新的文献求助10
6秒前
平淡的凌寒完成签到,获得积分20
7秒前
Billy应助Rie采纳,获得30
11秒前
墨海应助祭途采纳,获得30
11秒前
不管了完成签到,获得积分20
11秒前
11秒前
liu发布了新的文献求助10
11秒前
杜不是杜完成签到,获得积分10
11秒前
11秒前
12秒前
苹果书文完成签到 ,获得积分10
12秒前
12秒前
13秒前
朝瑶完成签到,获得积分10
14秒前
CipherSage应助zzk采纳,获得10
14秒前
ssdddq完成签到,获得积分10
14秒前
流年发布了新的文献求助10
14秒前
JamesPei应助不管了采纳,获得10
14秒前
15秒前
我是老大应助yuan采纳,获得10
15秒前
16秒前
16秒前
今后应助研友_enPlon采纳,获得10
16秒前
17秒前
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227601
求助须知:如何正确求助?哪些是违规求助? 2875589
关于积分的说明 8191848
捐赠科研通 2542829
什么是DOI,文献DOI怎么找? 1373128
科研通“疑难数据库(出版商)”最低求助积分说明 646685
邀请新用户注册赠送积分活动 621178