亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A method of user recruitment and adaptation degree improvement via community collaboration in sparse mobile crowdsensing systems

计算机科学 感知 适应(眼睛) 约束(计算机辅助设计) 任务(项目管理) 自编码 矩阵分解 人工智能 机器学习 数据挖掘 深度学习 特征向量 生物 光学 物理 工程类 机械工程 经济 神经科学 管理 量子力学
作者
Jian Wang,Xiaowei Zhan,Yuping Yan,Guosheng Zhao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107464-107464
标识
DOI:10.1016/j.engappai.2023.107464
摘要

The task allocation problem in sparse mobile crowdsensing is simplified as a subarea selection problem. However, the lack of participants in some high-value subareas leads to the low quality of the final inferred sensing map. To solve this problem, a method of user recruitment and adaptation degree improvement via community collaboration is proposed. Firstly, the adjacency matrix is constructed based on the social relationship of the participants, and then all the participants are classified into communities by the non-negative matrix factorization method of deep autoencoder-like; secondly, the perception platform matches the perception tasks with the centroids of the perception communities based on the different eigenvalues of the classified perception communities and the location characteristics of the perception tasks. After the matching is completed, some participants in the matched communities will be selected to complete the perceptual tasks under the constraint of perceptual cost; finally, the perceptual data provided by the participants is used to obtain the complete perceptual map using the compressed perceptual algorithm. We designed this user recruitment method to obtain high-quality sensing data by recruiting a small number of users after community classification based on their social relationships and then accurately inferring the entire perceptual map. The experimental results based on the Gowalla and U-Air datasets show that the user recruitment method proposed in this paper can infer accurate data with fewer sensing areas, which is significantly better than other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
1秒前
10秒前
23秒前
yaoyao发布了新的文献求助10
28秒前
42秒前
Jack80发布了新的文献求助50
1分钟前
科研王者发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zxr123关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
Chenzr发布了新的文献求助10
1分钟前
Lsh173373完成签到,获得积分10
1分钟前
搜集达人应助Jack80采纳,获得50
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
zxr123发布了新的文献求助10
2分钟前
2分钟前
舒心的晟睿完成签到,获得积分10
2分钟前
2分钟前
Jack80发布了新的文献求助50
2分钟前
豆包完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
阿智发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
隐形曼青应助西瓜撞地球采纳,获得10
3分钟前
3分钟前
3分钟前
dilli完成签到 ,获得积分10
3分钟前
希望天下0贩的0应助Jasmine采纳,获得10
3分钟前
3分钟前
李爱国应助阿智采纳,获得10
3分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234555
求助须知:如何正确求助?哪些是违规求助? 2880908
关于积分的说明 8217319
捐赠科研通 2548507
什么是DOI,文献DOI怎么找? 1377792
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623347