A method of user recruitment and adaptation degree improvement via community collaboration in sparse mobile crowdsensing systems

计算机科学 感知 适应(眼睛) 约束(计算机辅助设计) 任务(项目管理) 自编码 矩阵分解 人工智能 机器学习 数据挖掘 深度学习 特征向量 机械工程 物理 管理 量子力学 神经科学 光学 经济 生物 工程类
作者
Jian Wang,Xiuying Zhan,Yuping Yan,Guosheng Zhao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107464-107464
标识
DOI:10.1016/j.engappai.2023.107464
摘要

The task allocation problem in sparse mobile crowdsensing is simplified as a subarea selection problem. However, the lack of participants in some high-value subareas leads to the low quality of the final inferred sensing map. To solve this problem, a method of user recruitment and adaptation degree improvement via community collaboration is proposed. Firstly, the adjacency matrix is constructed based on the social relationship of the participants, and then all the participants are classified into communities by the non-negative matrix factorization method of deep autoencoder-like; secondly, the perception platform matches the perception tasks with the centroids of the perception communities based on the different eigenvalues of the classified perception communities and the location characteristics of the perception tasks. After the matching is completed, some participants in the matched communities will be selected to complete the perceptual tasks under the constraint of perceptual cost; finally, the perceptual data provided by the participants is used to obtain the complete perceptual map using the compressed perceptual algorithm. We designed this user recruitment method to obtain high-quality sensing data by recruiting a small number of users after community classification based on their social relationships and then accurately inferring the entire perceptual map. The experimental results based on the Gowalla and U-Air datasets show that the user recruitment method proposed in this paper can infer accurate data with fewer sensing areas, which is significantly better than other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助药学牛马采纳,获得10
刚刚
lixm发布了新的文献求助10
1秒前
NAA完成签到,获得积分10
2秒前
2秒前
tao_blue完成签到,获得积分10
2秒前
荔枝完成签到,获得积分20
2秒前
2秒前
3秒前
许多知识完成签到,获得积分10
3秒前
缓慢的战斗机完成签到,获得积分20
4秒前
圣晟胜发布了新的文献求助10
4秒前
科研通AI5应助nextconnie采纳,获得10
5秒前
陈朝旧迹完成签到,获得积分10
5秒前
无花果应助虚心海燕采纳,获得10
6秒前
sun发布了新的文献求助30
7秒前
7秒前
KBYer完成签到,获得积分10
7秒前
FashionBoy应助阳阳采纳,获得10
7秒前
许多知识发布了新的文献求助10
8秒前
苏源智完成签到,获得积分10
8秒前
Andy完成签到 ,获得积分10
10秒前
明理晓霜发布了新的文献求助10
12秒前
ZHANGMANLI0422关注了科研通微信公众号
12秒前
M先生发布了新的文献求助30
13秒前
FashionBoy应助许多知识采纳,获得10
14秒前
Poyd完成签到,获得积分10
17秒前
17秒前
故意的傲玉应助tao_blue采纳,获得10
18秒前
18秒前
kid1912完成签到,获得积分0
18秒前
小马甲应助一网小海蜇采纳,获得10
21秒前
专一的笑阳完成签到 ,获得积分10
21秒前
xuesensu完成签到 ,获得积分10
25秒前
豌豆完成签到,获得积分10
26秒前
M先生完成签到,获得积分10
26秒前
27秒前
29秒前
科研通AI5应助sun采纳,获得10
29秒前
shitzu完成签到 ,获得积分10
30秒前
choco发布了新的文献求助10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849