Estimation of plant water content in cut chrysanthemum using leaf-based hyperspectral reflectance

高光谱成像 光谱辐射计 菊花 数学 反射率 均方误差 园艺 切花 环境科学 灌溉 遥感 农学 生物 统计 地理 光学 物理
作者
Jiangjie Lu,Yin Wu,H. G. Liu,Tingyu Gou,Shuang Zhao,Fadi Chen,Jiafu Jiang,Sumei Chen,Weimin Fang,Zhiyong Guan
出处
期刊:Scientia Horticulturae [Elsevier]
卷期号:323: 112517-112517 被引量:1
标识
DOI:10.1016/j.scienta.2023.112517
摘要

Water plays an important role in the growth process of cut chrysanthemum (Chrysanthemum morifolium Ramat.). Accurate monitoring of plant water content (PWC) is a vital guarantee for the high-quality production of cut chrysanthemums. Hyperspectral remote sensing technology has been widely used in precision agriculture due to its rapid, convenient, and nondestructive advantages, but relatively little is known about its use for predicting the PWC of cut chrysanthemums. Therefore, this study aimed to evaluate the performance of hyperspectral reflectance from different leaf layers for estimating the PWC of cut chrysanthemums. A hyperspectral spectroradiometer was used to collect hyperspectral reflectance data (350-2500 nm) from three leaf layers at different critical growth periods. Immediately following the spectra measurements, cut chrysanthemum canopies were sampled for PWC. Spectral index and partial least square regression (PLSR) were then used to establish PWC estimation models of cut chrysanthemums. The results showed that the first leaf layer (LL1) was the optimal leaf layer for estimating the PWC of cut chrysanthemum. The new proposed two-band spectral index, NDVI-LL1 (R2280, R1885), exhibited moderate prediction capability for PWC cut chrysanthemum (R2=0.54658, RMSE=0.02352). Moreover, compared with the spectral index model, the model using the PLSR-LL1 showed the best performance for estimating the cut chrysanthemum PWC (R2=0.93510, RMSE=0.00887). Our results can provide technical support for spectral monitoring of PWC and precise irrigation in cut chrysanthemums.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的哈密瓜完成签到,获得积分10
刚刚
小小发布了新的文献求助10
刚刚
小二郎应助成就缘分采纳,获得10
刚刚
1秒前
看看文献吧完成签到,获得积分10
1秒前
啵啵发布了新的文献求助10
1秒前
2秒前
初吻还在发布了新的文献求助10
2秒前
哇哦发布了新的文献求助10
3秒前
李唯佳发布了新的文献求助10
3秒前
3秒前
酷波er应助渊思采纳,获得10
3秒前
3秒前
罗mian完成签到,获得积分10
4秒前
4秒前
WUJIAYU完成签到 ,获得积分10
5秒前
小蘑菇应助小汤圆采纳,获得10
6秒前
认真的小熊饼干完成签到,获得积分10
6秒前
Grayball应助蒙开心采纳,获得10
6秒前
6秒前
真开心完成签到,获得积分10
6秒前
Ava应助点点采纳,获得10
6秒前
Seldomyg完成签到 ,获得积分10
7秒前
鲸是海蓝色关注了科研通微信公众号
7秒前
南亭完成签到,获得积分10
7秒前
Orange应助o10采纳,获得10
8秒前
8秒前
8秒前
小王发布了新的文献求助10
9秒前
初吻还在完成签到,获得积分10
10秒前
MADKAI发布了新的文献求助10
10秒前
Asss完成签到,获得积分10
10秒前
10秒前
时光友岸完成签到,获得积分10
11秒前
12秒前
昭昭完成签到,获得积分10
12秒前
niu1完成签到,获得积分10
13秒前
铃兰完成签到,获得积分10
13秒前
尘尘完成签到,获得积分10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672