PreGenerator: TCM Prescription Recommendation Model Based on Retrieval and Generation Method

药方 计算机科学 情报检索 人工智能 自然语言处理 医学 药理学
作者
Zijuan Zhao,Xueting Ren,Kai Song,Yan Qiang,Juanjuan Zhao,Jun‐Long Zhang,Han Peng
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 103679-103692
标识
DOI:10.1109/access.2023.3316219
摘要

The generation of Traditional Chinese Medicine (TCM) prescription is one of the most challenging tasks in the research of intelligent TCM. Current researches usually use transfer learning methods to apply the relevant technology of text generation to this task simply and roughly. Either they need to train a model with large number of standardized dataset, or they ignore the domain knowledge and expertise of TCM. In order to solve these problems, we propose a hybrid neural network architecture for TCM prescription generation— PreGenerator . It includes a novel hierarchical retrieval mechanism, which can automatically extract prescription and herbal templates to facilitate accurate clinical prescription generation. Firstly, PreGenerator uses the Symptom-Prescription Retrieval (SHR) module to retrieve the most relevant prescriptions for a given patient’s symptoms. In order to follow the rule of compatibility of herbs, the Herb-Herb Retrieval (HHR) module is introduced to retrieve the next most relevant herb according to the conditioned generated herbs. Finally, the prescription decoder (PreD) fuses the symptom features, the retrieved prescription and herbal template features to generate the most relevant and effective Chinese medicine prescription. The validity of the model is verified by automatic evaluation and manual evaluation on the real medical case dataset. In addition, our model can recommend herbs that do not appear on the prescription label but are useful for relieving symptoms, which shows that our model can learn some interactions between herbs and symptoms. This research also lays a foundation for the future research on intelligent query and prescription generation of traditional Chinese medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CARL发布了新的文献求助10
1秒前
Singularity应助静谧180采纳,获得20
1秒前
1秒前
刻苦慕晴完成签到 ,获得积分10
2秒前
小何HUHU完成签到,获得积分10
3秒前
4秒前
哈哈哈哈发布了新的文献求助10
4秒前
酷波er应助醒醒采纳,获得30
5秒前
隐形曼青应助嗑瓜子传奇采纳,获得10
5秒前
球球发布了新的文献求助10
5秒前
我爱学习发布了新的文献求助20
5秒前
珊珊发布了新的文献求助10
6秒前
6秒前
8秒前
布丁完成签到,获得积分10
9秒前
9秒前
CipherSage应助跳跃雯采纳,获得10
10秒前
10秒前
10秒前
12秒前
bb发布了新的文献求助10
14秒前
Abdory完成签到,获得积分10
14秒前
共享精神应助DUANG-Jerry采纳,获得30
15秒前
橙子发布了新的文献求助10
15秒前
科研狗发布了新的文献求助10
15秒前
星辰大海应助小淡采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
希望天下0贩的0应助球球采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
不配.应助科研通管家采纳,获得10
19秒前
浅尝离白应助科研通管家采纳,获得30
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260