CMBEE: A Constraint-Based Multi-Task Learning Framework for Biomedical Event Extraction

任务(项目管理) 约束(计算机辅助设计) 计算机科学 事件(粒子物理) 萃取(化学) 多任务学习 人工智能 数学 化学 工程类 系统工程 色谱法 物理 几何学 量子力学
作者
Jingyue Hu,Buzhou Tang,Nan Lyu,Yuxin He,Ying Xiong
标识
DOI:10.2139/ssrn.4545978
摘要

Objective: Event extraction plays a crucial role in natural language processing. However, in the biomedical domain, the presence of nested events adds complexity to event extraction compared to single events, and these events usually have strong semantic relationships and constraints. Previous approaches ignored the binding connections between these complex nested events. This study aims to develop a unified framework based on event constraint information that jointly extract biomedical event triggers and arguments and enhance the performance of nested biomedical event extraction. Material and Methods: We propose a multi-task learning framework based on constraint information called CMBEE for the task of biomedical event extraction. The N-tuple form of event patterns is used to represent the constrained information, which is integrated into role detection and event type classification tasks. The framework use attention mechanism and gating mechanism to explore the fusion of multiple tuple information, as well as local and global constrained information fusion methods to dig further into the connections between events. Results: Experimental results demonstrate that our proposed method achieves the highest F1 score on a multilevel event extraction biomedical (MLEE) corpus and performs favorably on the biomedical natural language processing shared task 2013 Genia event corpus (GE 13).Conclusions: The experimental results indicate that modeling event patterns and constraints for multi-event extraction tasks is effective for complex biomedical event extraction. The fusion strategy proposed in this study, which incorporates different constraint information, helps to better express semantic information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷筒粉发布了新的文献求助10
刚刚
土豆发布了新的文献求助10
1秒前
1秒前
完美世界应助chenhan采纳,获得20
1秒前
1秒前
Affiliation完成签到,获得积分10
1秒前
三尺缺口完成签到,获得积分10
2秒前
2秒前
文献打工人完成签到 ,获得积分10
4秒前
4秒前
充电宝应助天天采纳,获得10
5秒前
jqy发布了新的文献求助10
5秒前
啦啦啦完成签到,获得积分10
5秒前
levi0297发布了新的文献求助10
6秒前
朗明完成签到 ,获得积分10
6秒前
三尺缺口发布了新的文献求助10
7秒前
8秒前
科研通AI6应助轩轩采纳,获得10
9秒前
10秒前
10秒前
11秒前
天天快乐应助feiniao采纳,获得10
15秒前
今后应助Paradox采纳,获得10
15秒前
16秒前
无心的老五完成签到,获得积分10
16秒前
16秒前
怎么可能会凉完成签到 ,获得积分20
16秒前
16秒前
传奇3应助美好斓采纳,获得10
17秒前
17秒前
18秒前
19秒前
20秒前
20秒前
21秒前
Ching完成签到,获得积分10
21秒前
天天完成签到,获得积分10
22秒前
私密马赛发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627136
求助须知:如何正确求助?哪些是违规求助? 4713040
关于积分的说明 14961270
捐赠科研通 4783711
什么是DOI,文献DOI怎么找? 2554717
邀请新用户注册赠送积分活动 1516294
关于科研通互助平台的介绍 1476616