CMBEE: A Constraint-Based Multi-Task Learning Framework for Biomedical Event Extraction

任务(项目管理) 约束(计算机辅助设计) 计算机科学 事件(粒子物理) 萃取(化学) 多任务学习 人工智能 数学 化学 工程类 系统工程 色谱法 物理 几何学 量子力学
作者
Jingyue Hu,Buzhou Tang,Nan Lyu,Yuxin He,Ying Xiong
标识
DOI:10.2139/ssrn.4545978
摘要

Objective: Event extraction plays a crucial role in natural language processing. However, in the biomedical domain, the presence of nested events adds complexity to event extraction compared to single events, and these events usually have strong semantic relationships and constraints. Previous approaches ignored the binding connections between these complex nested events. This study aims to develop a unified framework based on event constraint information that jointly extract biomedical event triggers and arguments and enhance the performance of nested biomedical event extraction. Material and Methods: We propose a multi-task learning framework based on constraint information called CMBEE for the task of biomedical event extraction. The N-tuple form of event patterns is used to represent the constrained information, which is integrated into role detection and event type classification tasks. The framework use attention mechanism and gating mechanism to explore the fusion of multiple tuple information, as well as local and global constrained information fusion methods to dig further into the connections between events. Results: Experimental results demonstrate that our proposed method achieves the highest F1 score on a multilevel event extraction biomedical (MLEE) corpus and performs favorably on the biomedical natural language processing shared task 2013 Genia event corpus (GE 13).Conclusions: The experimental results indicate that modeling event patterns and constraints for multi-event extraction tasks is effective for complex biomedical event extraction. The fusion strategy proposed in this study, which incorporates different constraint information, helps to better express semantic information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得30
刚刚
我是老大应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
sxp1031完成签到,获得积分10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
hhgcc应助科研通管家采纳,获得10
1秒前
科研通AI5应助孙传彬采纳,获得10
1秒前
陶醉如柏完成签到,获得积分10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
CNS冲应助科研通管家采纳,获得20
1秒前
田様应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
李健应助小福采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
2秒前
大可完成签到,获得积分10
2秒前
赘婿应助重要的溪流采纳,获得10
2秒前
yyf完成签到,获得积分10
3秒前
黑色卡布奇诺完成签到,获得积分10
3秒前
帅气鹭洋发布了新的文献求助10
3秒前
3秒前
4秒前
世上无难事完成签到,获得积分20
4秒前
研友_VZG7GZ应助xq采纳,获得10
4秒前
SciGPT应助杨鑫宇采纳,获得10
4秒前
5秒前
yangtao199完成签到,获得积分10
5秒前
5秒前
SH完成签到,获得积分10
5秒前
木棉发布了新的文献求助10
5秒前
Hbjja发布了新的文献求助10
6秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598884
求助须知:如何正确求助?哪些是违规求助? 4009687
关于积分的说明 12413038
捐赠科研通 3689309
什么是DOI,文献DOI怎么找? 2033794
邀请新用户注册赠送积分活动 1066934
科研通“疑难数据库(出版商)”最低求助积分说明 952021