A rockburst prediction model based on extreme learning machine with improved Harris Hawks optimization and its application

粒子群优化 极限学习机 Bat算法 渡线 强度(物理) 工程类 人工智能 结构工程 机器学习 计算机科学 人工神经网络 量子力学 物理
作者
Mingliang Li,Kegang Li,Qingci Qin
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:134: 104978-104978 被引量:19
标识
DOI:10.1016/j.tust.2022.104978
摘要

As sudden, random, and uncertain rock dynamic disasters, rockbursts often threaten the lives of construction workers. Therefore, developing new rockburst intensity prediction methods is particularly important for the design and construction of hard rock geotechnical engineering projects. In this paper, a rockburst prediction method based on extreme learning machine (ELM) with improved Harris Hawks optimization (IHHO) was proposed for more accurate rockburst intensity predictions. First, 136 sets of typical rockburst case data were selected and subjected to normalization to get dimensionless data. Then, chaotic mapping and crossover and mutation operators were used to improve the Harris hawks optimization (HHO) and enhance its global search capability. Then 9 test functions were used to test, compare, and analyze the performance of genetic algorithm (GA), particle swarm optimization (PSO), HHO, and IHHO. Finally, a system was built based on the constructed rockburst intensity level prediction model and MATLAB programming. The comprehensive rockburst intensity level prediction system was applied to the headrace tunnels of Jinping-II Hydropower Station, contrasting the results of IHHO-ELM rockburst prediction model with those of FCM-MFIS model, six conventional machine learning models and the single-index rockburst criterion. The results show that its accuracy was as high as 94.12%, and has a higher convergence speed and higher prediction accuracy and may prove a new way of rockburst intensity level prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangmin完成签到,获得积分10
1秒前
1秒前
2秒前
隐形曼青应助科研胖子采纳,获得10
3秒前
麦满分发布了新的文献求助10
3秒前
阳光明明完成签到 ,获得积分10
4秒前
5秒前
YuZheng发布了新的文献求助10
7秒前
阳光明明关注了科研通微信公众号
8秒前
8秒前
9秒前
9秒前
10秒前
于广喜发布了新的文献求助10
11秒前
A_123完成签到,获得积分10
11秒前
李爱国应助zztqaq采纳,获得10
11秒前
ZHENDAO发布了新的文献求助10
11秒前
Dou_Xiaowen发布了新的文献求助10
11秒前
伊雪儿完成签到,获得积分10
13秒前
小小牛发布了新的文献求助10
14秒前
YuZheng完成签到,获得积分10
14秒前
酷波er应助戴先森采纳,获得30
14秒前
羽翼发布了新的文献求助10
14秒前
ldx发布了新的文献求助10
14秒前
14秒前
李健应助小羊采纳,获得10
16秒前
Akim应助srf0602.采纳,获得10
18秒前
18秒前
haoxiaoyao完成签到,获得积分20
18秒前
wanci应助jiejie采纳,获得30
21秒前
子车一手完成签到,获得积分10
21秒前
Akim应助现实的草莓采纳,获得10
21秒前
学术咸鱼完成签到,获得积分10
22秒前
ks发布了新的文献求助10
23秒前
wonhui发布了新的文献求助10
23秒前
长颈鹿完成签到 ,获得积分10
24秒前
25秒前
wang发布了新的文献求助10
25秒前
痴笑完成签到,获得积分10
25秒前
Dingjiani完成签到 ,获得积分10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244208
求助须知:如何正确求助?哪些是违规求助? 2887923
关于积分的说明 8250569
捐赠科研通 2556491
什么是DOI,文献DOI怎么找? 1384754
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 626000