A rockburst prediction model based on extreme learning machine with improved Harris Hawks optimization and its application

粒子群优化 极限学习机 Bat算法 渡线 强度(物理) 工程类 人工智能 结构工程 机器学习 计算机科学 人工神经网络 量子力学 物理
作者
Mingliang Li,Kegang Li,Qingci Qin
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:134: 104978-104978 被引量:35
标识
DOI:10.1016/j.tust.2022.104978
摘要

As sudden, random, and uncertain rock dynamic disasters, rockbursts often threaten the lives of construction workers. Therefore, developing new rockburst intensity prediction methods is particularly important for the design and construction of hard rock geotechnical engineering projects. In this paper, a rockburst prediction method based on extreme learning machine (ELM) with improved Harris Hawks optimization (IHHO) was proposed for more accurate rockburst intensity predictions. First, 136 sets of typical rockburst case data were selected and subjected to normalization to get dimensionless data. Then, chaotic mapping and crossover and mutation operators were used to improve the Harris hawks optimization (HHO) and enhance its global search capability. Then 9 test functions were used to test, compare, and analyze the performance of genetic algorithm (GA), particle swarm optimization (PSO), HHO, and IHHO. Finally, a system was built based on the constructed rockburst intensity level prediction model and MATLAB programming. The comprehensive rockburst intensity level prediction system was applied to the headrace tunnels of Jinping-II Hydropower Station, contrasting the results of IHHO-ELM rockburst prediction model with those of FCM-MFIS model, six conventional machine learning models and the single-index rockburst criterion. The results show that its accuracy was as high as 94.12%, and has a higher convergence speed and higher prediction accuracy and may prove a new way of rockburst intensity level prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李小伟发布了新的文献求助10
1秒前
摩天大楼完成签到,获得积分10
1秒前
1234关注了科研通微信公众号
1秒前
李勤_秦礼发布了新的文献求助30
2秒前
2秒前
kkkk发布了新的文献求助10
2秒前
雨中小王应助zhang采纳,获得10
2秒前
小小白来了完成签到,获得积分20
2秒前
所所应助xlz采纳,获得10
3秒前
田様应助LV采纳,获得10
3秒前
俊逸凌雪完成签到,获得积分10
3秒前
于思枫发布了新的文献求助10
3秒前
piupiu完成签到,获得积分10
3秒前
科目三应助明123采纳,获得10
4秒前
CodeCraft应助风趣的天问采纳,获得10
4秒前
Akim应助琪筱采纳,获得10
4秒前
怪点衣衣完成签到,获得积分10
4秒前
LYSM应助LHS采纳,获得10
5秒前
5秒前
xy发布了新的文献求助10
6秒前
王拥军发布了新的文献求助10
6秒前
7秒前
小冰发布了新的文献求助10
7秒前
mll完成签到,获得积分10
7秒前
nn发布了新的文献求助20
8秒前
小雨哥完成签到,获得积分10
8秒前
秋秋完成签到 ,获得积分10
8秒前
ChenYX发布了新的文献求助10
10秒前
慕青应助Ethereal采纳,获得10
10秒前
nn应助yy采纳,获得10
10秒前
11秒前
杜宇完成签到,获得积分10
12秒前
Orange应助式微采纳,获得10
12秒前
12秒前
12秒前
maclogos发布了新的文献求助10
13秒前
迅速西装发布了新的文献求助30
13秒前
Wqian发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589341
求助须知:如何正确求助?哪些是违规求助? 4674104
关于积分的说明 14791759
捐赠科研通 4628240
什么是DOI,文献DOI怎么找? 2532262
邀请新用户注册赠送积分活动 1500881
关于科研通互助平台的介绍 1468438