YOLOWeeds: A novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems

杂草 水准点(测量) 计算机科学 人工智能 目标检测 探测器 模式识别(心理学) 农学 地图学 地理 生物 电信
作者
Fengying Dang,Dong Chen,Yuzhen Lu,Zhaojian Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:205: 107655-107655 被引量:185
标识
DOI:10.1016/j.compag.2023.107655
摘要

Weeds are among the major threats to cotton production. Overreliance on herbicides for weed control has accelerated the evolution of herbicide-resistance in weeds and caused increasing concerns about environments, food safety and human health. Machine vision systems for automated/robotic weeding have received growing interest towards the realization of integrated, sustainable weed management. However, in the presence of unstructured field environments and significant biological variability of weeds, it remains a serious challenge to develop reliable weed identification and detection systems. A promising solution to address this challenge are the development of arge-scale, annotated image datasets of weeds specific to cropping systems and data-driven AI (artificial intelligence) models for weed detection. Among various deep learning architectures, a diversity of YOLO (You Only Look Once) detectors is well-suited for real-time application and has enjoyed great popularity for generic object detection. This study presents a new dataset (CottoWeedDet12) of weeds important to cotton production in the southern United States (U.S.); it consists of 5648 images of 12 weed classes with a total of 9370 bounding box annotations, collected under natural light conditions and at varied weed growth stages in cotton fields. A novel, comprehensive benchmark of 25 state-of-the-art YOLO object detectors of seven versions including YOLOv3, YOLOv4, Scaled-YOLOv4, YOLOR and YOLOv5, YOLOv6 and YOLOv7, has been established for weed detection on the dataset. Evaluated through the Monte-Caro cross validation with 5 replications, the detection accuracy in terms of [email protected] ranged from 88.14 % by YOLOv3-tiny to 95.22 % by YOLOv4, and the accuracy in terms of [email protected][0.5:0.95] ranged from 68.18 % by YOLOv3-tiny to 89.72 % by Scaled-YOLOv4. All the YOLO models especially YOLOv5n and YOLOv5s have shown great potential for real-time weed detection, and data augmentation could increase weed detection accuracy. Both the weed detection dataset2 and software program codes for model benchmarking in this study are publicly available3, which will be to be valuable resources for promoting future research on big data and AI-empowered weed detection and control for cotton and potentially other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxinyu发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
2秒前
大龙哥886应助熊熊采纳,获得10
2秒前
无极微光应助aliderichang采纳,获得20
3秒前
喵喵苗完成签到 ,获得积分10
4秒前
tianguan完成签到,获得积分10
6秒前
小叙完成签到 ,获得积分10
6秒前
infinite完成签到,获得积分10
7秒前
7秒前
7秒前
程公子完成签到,获得积分10
9秒前
Alarack发布了新的文献求助10
10秒前
humorlife完成签到,获得积分10
11秒前
13秒前
14秒前
15秒前
orixero应助kelexh采纳,获得10
15秒前
哇哈哈发布了新的文献求助30
19秒前
周梓萌完成签到,获得积分10
20秒前
科研通AI6应助六哥采纳,获得10
21秒前
蔡蔡完成签到 ,获得积分10
21秒前
22秒前
Amber发布了新的文献求助10
22秒前
glycine完成签到,获得积分10
23秒前
且慢应助cheryjay采纳,获得150
25秒前
晓舟发布了新的文献求助10
26秒前
小鬼完成签到 ,获得积分10
27秒前
风之子完成签到,获得积分10
27秒前
kelexh发布了新的文献求助10
28秒前
123完成签到,获得积分10
28秒前
欢喜的若灵完成签到,获得积分10
29秒前
且慢应助夜信采纳,获得20
29秒前
量子星尘发布了新的文献求助10
30秒前
zhscu完成签到,获得积分10
30秒前
32秒前
善学以致用应助whm采纳,获得10
34秒前
六哥完成签到,获得积分10
35秒前
qing完成签到,获得积分10
35秒前
晓舟完成签到,获得积分20
35秒前
陈永伟完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832