亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLOWeeds: A novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems

杂草 水准点(测量) 计算机科学 人工智能 目标检测 探测器 模式识别(心理学) 农学 地图学 地理 生物 电信
作者
Fengying Dang,Dong Chen,Yuzhen Lu,Zhaojian Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107655-107655 被引量:148
标识
DOI:10.1016/j.compag.2023.107655
摘要

Weeds are among the major threats to cotton production. Overreliance on herbicides for weed control has accelerated the evolution of herbicide-resistance in weeds and caused increasing concerns about environments, food safety and human health. Machine vision systems for automated/robotic weeding have received growing interest towards the realization of integrated, sustainable weed management. However, in the presence of unstructured field environments and significant biological variability of weeds, it remains a serious challenge to develop reliable weed identification and detection systems. A promising solution to address this challenge are the development of arge-scale, annotated image datasets of weeds specific to cropping systems and data-driven AI (artificial intelligence) models for weed detection. Among various deep learning architectures, a diversity of YOLO (You Only Look Once) detectors is well-suited for real-time application and has enjoyed great popularity for generic object detection. This study presents a new dataset (CottoWeedDet12) of weeds important to cotton production in the southern United States (U.S.); it consists of 5648 images of 12 weed classes with a total of 9370 bounding box annotations, collected under natural light conditions and at varied weed growth stages in cotton fields. A novel, comprehensive benchmark of 25 state-of-the-art YOLO object detectors of seven versions including YOLOv3, YOLOv4, Scaled-YOLOv4, YOLOR and YOLOv5, YOLOv6 and YOLOv7, has been established for weed detection on the dataset. Evaluated through the Monte-Caro cross validation with 5 replications, the detection accuracy in terms of [email protected] ranged from 88.14 % by YOLOv3-tiny to 95.22 % by YOLOv4, and the accuracy in terms of [email protected][0.5:0.95] ranged from 68.18 % by YOLOv3-tiny to 89.72 % by Scaled-YOLOv4. All the YOLO models especially YOLOv5n and YOLOv5s have shown great potential for real-time weed detection, and data augmentation could increase weed detection accuracy. Both the weed detection dataset2 and software program codes for model benchmarking in this study are publicly available3, which will be to be valuable resources for promoting future research on big data and AI-empowered weed detection and control for cotton and potentially other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助zsp采纳,获得30
7秒前
19秒前
领导范儿应助556采纳,获得10
21秒前
Persist6578完成签到 ,获得积分10
23秒前
半城微凉应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
ljx完成签到 ,获得积分10
34秒前
48秒前
51秒前
fx完成签到 ,获得积分10
1分钟前
ZZICU完成签到,获得积分10
1分钟前
文献完成签到 ,获得积分10
1分钟前
1分钟前
义气的钥匙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Jasper应助yyyalles采纳,获得30
1分钟前
1分钟前
556发布了新的文献求助10
1分钟前
556完成签到 ,获得积分10
2分钟前
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
WUHUIWEN完成签到,获得积分10
2分钟前
2分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
大个应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
yyyalles发布了新的文献求助30
2分钟前
潇湘雪月发布了新的文献求助20
2分钟前
2分钟前
2分钟前
方的圆完成签到,获得积分10
2分钟前
zsp发布了新的文献求助30
2分钟前
清秀的宝马完成签到 ,获得积分10
3分钟前
alex_zhao完成签到,获得积分10
3分钟前
xiuxiuzhang完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214