YOLOWeeds: A novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems

杂草 水准点(测量) 计算机科学 人工智能 目标检测 深度学习 杂草防治 探测器 农业工程 模式识别(心理学) 工程类 农学 地图学 地理 生物 电信
作者
Fengying Dang,Dong Chen,Yuzhen Lu,Zhaojian Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:205: 107655-107655 被引量:88
标识
DOI:10.1016/j.compag.2023.107655
摘要

Weeds are among the major threats to cotton production. Overreliance on herbicides for weed control has accelerated the evolution of herbicide-resistance in weeds and caused increasing concerns about environments, food safety and human health. Machine vision systems for automated/robotic weeding have received growing interest towards the realization of integrated, sustainable weed management. However, in the presence of unstructured field environments and significant biological variability of weeds, it remains a serious challenge to develop reliable weed identification and detection systems. A promising solution to address this challenge are the development of arge-scale, annotated image datasets of weeds specific to cropping systems and data-driven AI (artificial intelligence) models for weed detection. Among various deep learning architectures, a diversity of YOLO (You Only Look Once) detectors is well-suited for real-time application and has enjoyed great popularity for generic object detection. This study presents a new dataset (CottoWeedDet12) of weeds important to cotton production in the southern United States (U.S.); it consists of 5648 images of 12 weed classes with a total of 9370 bounding box annotations, collected under natural light conditions and at varied weed growth stages in cotton fields. A novel, comprehensive benchmark of 25 state-of-the-art YOLO object detectors of seven versions including YOLOv3, YOLOv4, Scaled-YOLOv4, YOLOR and YOLOv5, YOLOv6 and YOLOv7, has been established for weed detection on the dataset. Evaluated through the Monte-Caro cross validation with 5 replications, the detection accuracy in terms of [email protected] ranged from 88.14 % by YOLOv3-tiny to 95.22 % by YOLOv4, and the accuracy in terms of [email protected][0.5:0.95] ranged from 68.18 % by YOLOv3-tiny to 89.72 % by Scaled-YOLOv4. All the YOLO models especially YOLOv5n and YOLOv5s have shown great potential for real-time weed detection, and data augmentation could increase weed detection accuracy. Both the weed detection dataset2 and software program codes for model benchmarking in this study are publicly available3, which will be to be valuable resources for promoting future research on big data and AI-empowered weed detection and control for cotton and potentially other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
重要大地发布了新的文献求助10
刚刚
刚刚
外向的梦琪完成签到,获得积分10
刚刚
wawaeryu完成签到,获得积分10
刚刚
KeCoKeLe完成签到,获得积分10
刚刚
清脆的思枫完成签到,获得积分20
1秒前
1111完成签到,获得积分10
2秒前
2秒前
英姑应助希勤采纳,获得10
2秒前
2秒前
LM完成签到,获得积分10
2秒前
嘉丽的后花园完成签到,获得积分10
3秒前
3秒前
4秒前
知非完成签到,获得积分10
4秒前
爆米花应助小心采纳,获得10
4秒前
fgd完成签到 ,获得积分10
4秒前
挺起我的小胸膛完成签到,获得积分10
4秒前
燕儿发布了新的文献求助10
4秒前
5秒前
5秒前
邝边边完成签到,获得积分10
5秒前
5秒前
6秒前
AntWiser发布了新的文献求助10
6秒前
昔时旧日发布了新的文献求助10
6秒前
Louise完成签到,获得积分10
7秒前
浚稚发布了新的文献求助20
8秒前
Marco21发布了新的文献求助10
9秒前
9秒前
wang5945发布了新的文献求助10
9秒前
9秒前
Janson发布了新的文献求助10
10秒前
周周完成签到,获得积分10
10秒前
10秒前
辣比小欣完成签到,获得积分10
10秒前
Hh发布了新的文献求助10
10秒前
闪耀吨吨完成签到,获得积分10
11秒前
星辰大海应助清脆的思枫采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134243
求助须知:如何正确求助?哪些是违规求助? 2785100
关于积分的说明 7770199
捐赠科研通 2440666
什么是DOI,文献DOI怎么找? 1297493
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792