Semi-Supervised Active Learning for Anomaly Detection in Aviation

异常检测 航空 计算机科学 监督学习 异常(物理) 人工智能 机器学习 航空安全 领域(数学) 航空事故 数据挖掘 工程类 物理 数学 凝聚态物理 人工神经网络 纯数学 航空航天工程
作者
Milad Memarzadeh,Bryan Matthews,Thomas Templin,Aida Sharif Rohani,Daniel Weckler
出处
期刊:Journal of aerospace information systems [American Institute of Aeronautics and Astronautics]
卷期号:20 (4): 181-194 被引量:5
标识
DOI:10.2514/1.i011083
摘要

Anomaly detection in commercial aviation is an extremely challenging yet crucial task. Accurately detecting operationally significant anomalies can save civilian lives and/or result in significant savings in maintenance cost. The current practice uses manually tuned rule-based mechanisms to flag exceedances from predefined safety boundaries. However, this system cannot identify unknown risks and emerging vulnerabilities. Recently, innovative approaches based on machine learning have been used to automate anomaly detection. However, there are limits to their applicability in the field of aviation due to several challenges: 1) Properly reviewed data are scarce in aviation and, as a result, supervised learning cannot reach optimal performance. 2) Operationally significant anomalies do not coincide with statistically significant ones and, as a result, unsupervised learning fails to provide reliable and robust performance. In this paper, we propose a semi-supervised active learning framework for anomaly detection (SALAD), which detects operationally significant anomalies in flight operational quality assurance data. The developed framework works with vast amounts of unlabeled data as well as a small quantity of labeled data reviewed by subject matter experts to reliably identify safety anomalies in flight operations. Moreover, the model’s active learning strategy allows it to detect unknown anomalies that might emerge in the system. We validate the performance of the SALAD with a real-world case study of anomaly detection during the approach to landing of commercial aircraft. We specifically show that the proposed framework reaches reliable performance when only 1% of the data is labeled and can identify unknown anomalies effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡完成签到,获得积分10
刚刚
sun驳回了科目三应助
刚刚
投机倒把完成签到,获得积分20
1秒前
Serein发布了新的文献求助10
2秒前
2秒前
小鱼在草里完成签到,获得积分10
3秒前
April完成签到,获得积分10
3秒前
若水三千完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
xiaoli完成签到,获得积分10
4秒前
Lifetour发布了新的文献求助10
5秒前
WWWhy完成签到 ,获得积分10
5秒前
hiufo完成签到 ,获得积分10
5秒前
ma发布了新的文献求助10
6秒前
秦胤完成签到 ,获得积分10
6秒前
花痴的尔丝完成签到,获得积分10
6秒前
脑洞疼应助若水三千采纳,获得10
6秒前
丘比特应助coffee采纳,获得10
7秒前
袁佳铖发布了新的文献求助10
8秒前
8秒前
勤奋冬寒完成签到,获得积分10
8秒前
8秒前
唐逗仁儿发布了新的文献求助50
9秒前
9秒前
wanci应助nini采纳,获得10
9秒前
Ava应助嘟嘟嘟采纳,获得10
9秒前
Aprial发布了新的文献求助10
9秒前
赵琪发布了新的文献求助10
10秒前
11秒前
筱诸雄完成签到,获得积分10
11秒前
xl关闭了xl文献求助
12秒前
wangyy完成签到,获得积分20
12秒前
大个应助玩命的绾绾采纳,获得10
12秒前
12秒前
芘二胺完成签到,获得积分10
12秒前
ccz发布了新的文献求助10
12秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221970
求助须知:如何正确求助?哪些是违规求助? 2870660
关于积分的说明 8171566
捐赠科研通 2537658
什么是DOI,文献DOI怎么找? 1369566
科研通“疑难数据库(出版商)”最低求助积分说明 645546
邀请新用户注册赠送积分活动 619234