Semi-Supervised Active Learning for Anomaly Detection in Aviation

异常检测 航空 计算机科学 监督学习 异常(物理) 人工智能 机器学习 航空安全 领域(数学) 航空事故 数据挖掘 工程类 物理 航空航天工程 人工神经网络 纯数学 数学 凝聚态物理
作者
Milad Memarzadeh,Bryan Matthews,Thomas Templin,Aida Sharif Rohani,Daniel Weckler
出处
期刊:Journal of aerospace information systems [American Institute of Aeronautics and Astronautics]
卷期号:20 (4): 181-194 被引量:5
标识
DOI:10.2514/1.i011083
摘要

Anomaly detection in commercial aviation is an extremely challenging yet crucial task. Accurately detecting operationally significant anomalies can save civilian lives and/or result in significant savings in maintenance cost. The current practice uses manually tuned rule-based mechanisms to flag exceedances from predefined safety boundaries. However, this system cannot identify unknown risks and emerging vulnerabilities. Recently, innovative approaches based on machine learning have been used to automate anomaly detection. However, there are limits to their applicability in the field of aviation due to several challenges: 1) Properly reviewed data are scarce in aviation and, as a result, supervised learning cannot reach optimal performance. 2) Operationally significant anomalies do not coincide with statistically significant ones and, as a result, unsupervised learning fails to provide reliable and robust performance. In this paper, we propose a semi-supervised active learning framework for anomaly detection (SALAD), which detects operationally significant anomalies in flight operational quality assurance data. The developed framework works with vast amounts of unlabeled data as well as a small quantity of labeled data reviewed by subject matter experts to reliably identify safety anomalies in flight operations. Moreover, the model’s active learning strategy allows it to detect unknown anomalies that might emerge in the system. We validate the performance of the SALAD with a real-world case study of anomaly detection during the approach to landing of commercial aircraft. We specifically show that the proposed framework reaches reliable performance when only 1% of the data is labeled and can identify unknown anomalies effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
善良清炎发布了新的文献求助10
2秒前
新宇星辰发布了新的文献求助10
4秒前
幸福台灯发布了新的文献求助10
7秒前
7秒前
electricelectric应助风语村采纳,获得30
8秒前
8秒前
姽婳wy发布了新的文献求助20
9秒前
英俊的铭应助Sun采纳,获得10
10秒前
崔文浩发布了新的文献求助10
11秒前
落苏潮海发布了新的文献求助30
11秒前
小迷糊发布了新的文献求助10
11秒前
热沙来提完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
wanci应助HJJHJH采纳,获得10
15秒前
wxy发布了新的文献求助10
18秒前
18秒前
上官若男应助清脆的夜白采纳,获得10
20秒前
20秒前
香仔啊发布了新的文献求助10
20秒前
大个应助新宇星辰采纳,获得10
21秒前
科研通AI6应助悠夏sunny采纳,获得10
21秒前
nie完成签到,获得积分20
21秒前
失眠听南完成签到,获得积分10
21秒前
李会计和完成签到,获得积分10
22秒前
22秒前
寒冷南晴完成签到,获得积分10
23秒前
23秒前
ding应助结实半邪采纳,获得30
23秒前
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得100
25秒前
852应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355483
求助须知:如何正确求助?哪些是违规求助? 4487366
关于积分的说明 13969755
捐赠科研通 4387995
什么是DOI,文献DOI怎么找? 2410805
邀请新用户注册赠送积分活动 1403340
关于科研通互助平台的介绍 1376902