Semi-Supervised Active Learning for Anomaly Detection in Aviation

异常检测 航空 计算机科学 监督学习 异常(物理) 人工智能 机器学习 航空安全 领域(数学) 航空事故 数据挖掘 工程类 物理 航空航天工程 人工神经网络 纯数学 数学 凝聚态物理
作者
Milad Memarzadeh,Bryan Matthews,Thomas Templin,Aida Sharif Rohani,Daniel Weckler
出处
期刊:Journal of aerospace information systems [American Institute of Aeronautics and Astronautics]
卷期号:20 (4): 181-194 被引量:5
标识
DOI:10.2514/1.i011083
摘要

Anomaly detection in commercial aviation is an extremely challenging yet crucial task. Accurately detecting operationally significant anomalies can save civilian lives and/or result in significant savings in maintenance cost. The current practice uses manually tuned rule-based mechanisms to flag exceedances from predefined safety boundaries. However, this system cannot identify unknown risks and emerging vulnerabilities. Recently, innovative approaches based on machine learning have been used to automate anomaly detection. However, there are limits to their applicability in the field of aviation due to several challenges: 1) Properly reviewed data are scarce in aviation and, as a result, supervised learning cannot reach optimal performance. 2) Operationally significant anomalies do not coincide with statistically significant ones and, as a result, unsupervised learning fails to provide reliable and robust performance. In this paper, we propose a semi-supervised active learning framework for anomaly detection (SALAD), which detects operationally significant anomalies in flight operational quality assurance data. The developed framework works with vast amounts of unlabeled data as well as a small quantity of labeled data reviewed by subject matter experts to reliably identify safety anomalies in flight operations. Moreover, the model’s active learning strategy allows it to detect unknown anomalies that might emerge in the system. We validate the performance of the SALAD with a real-world case study of anomaly detection during the approach to landing of commercial aircraft. We specifically show that the proposed framework reaches reliable performance when only 1% of the data is labeled and can identify unknown anomalies effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rabinear发布了新的文献求助10
刚刚
刚刚
饶天源发布了新的文献求助10
刚刚
刚刚
1秒前
小夏咕噜发布了新的文献求助30
1秒前
2秒前
2秒前
平淡的吐司完成签到,获得积分10
2秒前
2秒前
聪慧的正豪举报cici求助涉嫌违规
3秒前
3秒前
南檬发布了新的文献求助10
4秒前
xuwen发布了新的文献求助10
4秒前
浮游应助guozizi采纳,获得10
5秒前
金子发布了新的文献求助10
5秒前
NexusExplorer应助糖糖糖采纳,获得10
6秒前
6秒前
6秒前
6秒前
hhgw完成签到 ,获得积分10
6秒前
leeleetyo发布了新的文献求助10
7秒前
7秒前
7秒前
haidan发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
情怀应助流浪采纳,获得10
8秒前
Rabinear完成签到,获得积分10
8秒前
乐乐应助Sherry采纳,获得10
10秒前
10秒前
握不住的沙完成签到,获得积分10
10秒前
10秒前
上官若男应助ton采纳,获得10
11秒前
空2完成签到 ,获得积分0
11秒前
11秒前
叙余完成签到 ,获得积分10
11秒前
12秒前
Houyulu完成签到,获得积分20
12秒前
ATEVYG完成签到 ,获得积分10
12秒前
Orange应助老实的百招采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4990191
求助须知:如何正确求助?哪些是违规求助? 4239222
关于积分的说明 13206043
捐赠科研通 4033624
什么是DOI,文献DOI怎么找? 2206823
邀请新用户注册赠送积分活动 1217987
关于科研通互助平台的介绍 1136175