Semi-Supervised Active Learning for Anomaly Detection in Aviation

异常检测 航空 计算机科学 监督学习 异常(物理) 人工智能 机器学习 航空安全 领域(数学) 航空事故 数据挖掘 工程类 物理 航空航天工程 人工神经网络 纯数学 数学 凝聚态物理
作者
Milad Memarzadeh,Bryan Matthews,Thomas Templin,Aida Sharif Rohani,Daniel Weckler
出处
期刊:Journal of aerospace information systems [American Institute of Aeronautics and Astronautics]
卷期号:20 (4): 181-194 被引量:5
标识
DOI:10.2514/1.i011083
摘要

Anomaly detection in commercial aviation is an extremely challenging yet crucial task. Accurately detecting operationally significant anomalies can save civilian lives and/or result in significant savings in maintenance cost. The current practice uses manually tuned rule-based mechanisms to flag exceedances from predefined safety boundaries. However, this system cannot identify unknown risks and emerging vulnerabilities. Recently, innovative approaches based on machine learning have been used to automate anomaly detection. However, there are limits to their applicability in the field of aviation due to several challenges: 1) Properly reviewed data are scarce in aviation and, as a result, supervised learning cannot reach optimal performance. 2) Operationally significant anomalies do not coincide with statistically significant ones and, as a result, unsupervised learning fails to provide reliable and robust performance. In this paper, we propose a semi-supervised active learning framework for anomaly detection (SALAD), which detects operationally significant anomalies in flight operational quality assurance data. The developed framework works with vast amounts of unlabeled data as well as a small quantity of labeled data reviewed by subject matter experts to reliably identify safety anomalies in flight operations. Moreover, the model’s active learning strategy allows it to detect unknown anomalies that might emerge in the system. We validate the performance of the SALAD with a real-world case study of anomaly detection during the approach to landing of commercial aircraft. We specifically show that the proposed framework reaches reliable performance when only 1% of the data is labeled and can identify unknown anomalies effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个可爱玉完成签到,获得积分20
刚刚
英俊的铭应助chaoschen采纳,获得50
4秒前
星辰大海应助忧心的清炎采纳,获得10
4秒前
慕青应助一个可爱玉采纳,获得10
5秒前
7秒前
充电宝应助Luke采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
11秒前
dala发布了新的文献求助30
12秒前
Go完成签到,获得积分10
13秒前
爆米花应助无心的土豆采纳,获得10
14秒前
14秒前
咖褐完成签到 ,获得积分10
15秒前
zwj完成签到,获得积分20
15秒前
kk发布了新的文献求助10
15秒前
15秒前
在水一方应助繁荣的牛排采纳,获得10
15秒前
fsdghert发布了新的文献求助10
18秒前
20秒前
包容的雁枫完成签到,获得积分10
20秒前
26秒前
27秒前
slin_sjtu完成签到,获得积分10
28秒前
mnc发布了新的文献求助10
30秒前
30秒前
30秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
Orange应助kk采纳,获得10
34秒前
万安安发布了新的文献求助10
35秒前
36秒前
36秒前
活泼听露发布了新的文献求助10
36秒前
38秒前
38秒前
yanlulu完成签到 ,获得积分10
39秒前
40秒前
MA发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740