已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semi-Supervised Active Learning for Anomaly Detection in Aviation

异常检测 航空 计算机科学 监督学习 异常(物理) 人工智能 机器学习 航空安全 领域(数学) 航空事故 数据挖掘 工程类 物理 航空航天工程 人工神经网络 纯数学 数学 凝聚态物理
作者
Milad Memarzadeh,Bryan Matthews,Thomas Templin,Aida Sharif Rohani,Daniel Weckler
出处
期刊:Journal of aerospace information systems [American Institute of Aeronautics and Astronautics]
卷期号:20 (4): 181-194 被引量:5
标识
DOI:10.2514/1.i011083
摘要

Anomaly detection in commercial aviation is an extremely challenging yet crucial task. Accurately detecting operationally significant anomalies can save civilian lives and/or result in significant savings in maintenance cost. The current practice uses manually tuned rule-based mechanisms to flag exceedances from predefined safety boundaries. However, this system cannot identify unknown risks and emerging vulnerabilities. Recently, innovative approaches based on machine learning have been used to automate anomaly detection. However, there are limits to their applicability in the field of aviation due to several challenges: 1) Properly reviewed data are scarce in aviation and, as a result, supervised learning cannot reach optimal performance. 2) Operationally significant anomalies do not coincide with statistically significant ones and, as a result, unsupervised learning fails to provide reliable and robust performance. In this paper, we propose a semi-supervised active learning framework for anomaly detection (SALAD), which detects operationally significant anomalies in flight operational quality assurance data. The developed framework works with vast amounts of unlabeled data as well as a small quantity of labeled data reviewed by subject matter experts to reliably identify safety anomalies in flight operations. Moreover, the model’s active learning strategy allows it to detect unknown anomalies that might emerge in the system. We validate the performance of the SALAD with a real-world case study of anomaly detection during the approach to landing of commercial aircraft. We specifically show that the proposed framework reaches reliable performance when only 1% of the data is labeled and can identify unknown anomalies effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luoshi94完成签到,获得积分10
刚刚
3秒前
4秒前
ZZQ发布了新的文献求助10
5秒前
妤懿完成签到 ,获得积分10
6秒前
刘书洋发布了新的文献求助10
7秒前
FashionBoy应助开心丸子采纳,获得10
8秒前
壮观复天完成签到 ,获得积分10
9秒前
11秒前
11秒前
123456发布了新的文献求助10
11秒前
企鹅爱煲汤完成签到,获得积分10
12秒前
kai发布了新的文献求助10
14秒前
ZZQ完成签到,获得积分10
16秒前
asd发布了新的文献求助10
16秒前
16秒前
18秒前
20秒前
小蘑菇应助Epiphany_wts采纳,获得10
20秒前
米酒汤圆发布了新的文献求助30
21秒前
violet完成签到 ,获得积分10
24秒前
若水完成签到 ,获得积分10
25秒前
25秒前
Yau完成签到,获得积分10
26秒前
kai完成签到,获得积分10
28秒前
wackykao完成签到 ,获得积分10
28秒前
29秒前
JamesPei应助Epiphany_wts采纳,获得10
31秒前
于可欣发布了新的文献求助10
32秒前
32秒前
实验耗材完成签到 ,获得积分10
33秒前
34秒前
雷马发布了新的文献求助10
34秒前
哈哈完成签到 ,获得积分10
34秒前
善学以致用应助Nebulon采纳,获得10
35秒前
zz完成签到 ,获得积分10
38秒前
边缘发布了新的文献求助10
39秒前
40秒前
之组长了完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339