Semi-Supervised Active Learning for Anomaly Detection in Aviation

异常检测 航空 计算机科学 监督学习 异常(物理) 人工智能 机器学习 航空安全 领域(数学) 航空事故 数据挖掘 工程类 物理 航空航天工程 人工神经网络 纯数学 数学 凝聚态物理
作者
Milad Memarzadeh,Bryan Matthews,Thomas Templin,Aida Sharif Rohani,Daniel Weckler
出处
期刊:Journal of aerospace information systems [American Institute of Aeronautics and Astronautics]
卷期号:20 (4): 181-194 被引量:5
标识
DOI:10.2514/1.i011083
摘要

Anomaly detection in commercial aviation is an extremely challenging yet crucial task. Accurately detecting operationally significant anomalies can save civilian lives and/or result in significant savings in maintenance cost. The current practice uses manually tuned rule-based mechanisms to flag exceedances from predefined safety boundaries. However, this system cannot identify unknown risks and emerging vulnerabilities. Recently, innovative approaches based on machine learning have been used to automate anomaly detection. However, there are limits to their applicability in the field of aviation due to several challenges: 1) Properly reviewed data are scarce in aviation and, as a result, supervised learning cannot reach optimal performance. 2) Operationally significant anomalies do not coincide with statistically significant ones and, as a result, unsupervised learning fails to provide reliable and robust performance. In this paper, we propose a semi-supervised active learning framework for anomaly detection (SALAD), which detects operationally significant anomalies in flight operational quality assurance data. The developed framework works with vast amounts of unlabeled data as well as a small quantity of labeled data reviewed by subject matter experts to reliably identify safety anomalies in flight operations. Moreover, the model’s active learning strategy allows it to detect unknown anomalies that might emerge in the system. We validate the performance of the SALAD with a real-world case study of anomaly detection during the approach to landing of commercial aircraft. We specifically show that the proposed framework reaches reliable performance when only 1% of the data is labeled and can identify unknown anomalies effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soengmou完成签到,获得积分10
1秒前
獭獭发布了新的文献求助10
1秒前
1秒前
王打打完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
酷波er应助lululala采纳,获得10
2秒前
ccc发布了新的文献求助10
3秒前
zlj完成签到,获得积分10
4秒前
ly发布了新的文献求助10
5秒前
7秒前
1+1应助nini采纳,获得10
7秒前
8秒前
贺旭溪发布了新的文献求助10
9秒前
肥而不腻的羚羊完成签到,获得积分10
9秒前
安详向薇完成签到,获得积分10
10秒前
xiyaren完成签到,获得积分10
10秒前
chris chen完成签到,获得积分0
11秒前
11秒前
舒先生完成签到,获得积分10
11秒前
rr完成签到,获得积分20
11秒前
秋迎夏发布了新的文献求助10
11秒前
panpan完成签到,获得积分10
11秒前
李政卓完成签到,获得积分10
12秒前
无花果应助温暖芷文采纳,获得10
12秒前
鱼饼完成签到 ,获得积分10
12秒前
顾矜应助荣耀采纳,获得10
12秒前
安谢发布了新的文献求助10
13秒前
14秒前
小狸完成签到,获得积分10
14秒前
14秒前
14秒前
怂怂鼠完成签到,获得积分10
14秒前
dingjianqiang发布了新的文献求助10
14秒前
14秒前
七月的July发布了新的文献求助10
15秒前
NA发布了新的文献求助10
15秒前
隐形曼青应助李政卓采纳,获得10
16秒前
情怀应助2007zhi采纳,获得10
17秒前
重要松鼠发布了新的文献求助10
17秒前
大方紫寒完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
《电路与模拟电子电路PSpice仿真分析及设计》 500
《电子电路原理》 500
《数字电子技术》 500
半导体器件物理 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011730
求助须知:如何正确求助?哪些是违规求助? 3551477
关于积分的说明 11308909
捐赠科研通 3285728
什么是DOI,文献DOI怎么找? 1811136
邀请新用户注册赠送积分活动 886786
科研通“疑难数据库(出版商)”最低求助积分说明 811653