氧化应激
炎症
细胞凋亡
福克斯O1
细胞生物学
下调和上调
脐静脉
线粒体
活性氧
线粒体ROS
内皮干细胞
蛋白激酶B
生物
化学
信号转导
内分泌学
免疫学
生物化学
体外
基因
作者
Nunzia D’Onofrio,Francesco Prattichizzo,Elisa Martino,Camilla Anastasio,Luigi Mele,Rosalba La Grotta,Celestino Sardu,Antonio Ceriello,Raffaele Marfella,Giuseppe Paolisso,Maria Luisa Balestrieri
出处
期刊:Redox biology
[Elsevier]
日期:2023-03-17
卷期号:62: 102681-102681
被引量:20
标识
DOI:10.1016/j.redox.2023.102681
摘要
MiR-27b is highly expressed in endothelial cells (EC) but its function in this context is poorly characterized. This study aims to investigate the effect of miR-27b on inflammatory pathways, cell cycle, apoptosis, and mitochondrial oxidative imbalances in immortalized human aortic endothelial cells (teloHAEC), human umbilical vein endothelial cells (HUVEC), and human coronary artery endothelial cells (HCAEC) exposed to TNF-α. Treatment with TNF-α downregulates the expression of miR-27b in all EC lines, promotes the activation of inflammatory pathways, induces mitochondrial alteration and reactive oxygen species accumulation, fostering the induction of intrinsic apoptosis. Moreover, miR-27b mimic counteracts the TNF-α-related cytotoxicity and inflammation, as well as cell cycle arrest and caspase-3-dependent apoptosis, restoring mitochondria redox state, function, and membrane polarization. Mechanistically, hsa-miR-27b-3p targets the 3′untranslated regions of FOXO1 mRNA to downregulate its expression, blunting the activation of the Akt/FOXO1 pathway. Here, we show that miR-27b is involved in the regulation of a broad range of functionally intertwined phenomena in EC, suggesting its key role in mitigating mithochondrial oxidative stress and inflammation, most likely through targeting of FOXO1. Overall, results reveal for the first time that miR-27b could represent a possible target for future therapies aimed at improving endothelial health.
科研通智能强力驱动
Strongly Powered by AbleSci AI