Simultaneously enhancing mechanical properties and electrical conductivity of Cu-0.5%Cr alloy as 5G connector material

材料科学 合金 微观结构 电阻率和电导率 压痕硬度 复合材料 位错 降水 层状结构 冶金 晶界 变形(气象学) 相(物质) 电导率 电气工程 气象学 物理化学 工程类 有机化学 化学 物理
作者
Zhu Qi Chu,Kun Wei,Wei Wei,Igor Alexandrov,Xu Long An,Dan Wang,Xiang Kui Liu
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:948: 169750-169750 被引量:10
标识
DOI:10.1016/j.jallcom.2023.169750
摘要

With the rapid development of the 5 G communication, materials such as the high-speed backplane connector and the integrated circuit lead frame require higher strength and electrical conductivity. Copper alloys have been widely concerned due to their excellent electrical conductivity, thermal conductivity and good strength. A new method of preparing the Cu-0.5%Cr alloy by equal channel angular pressing (ECAP), deep cryogenic treatment (DCT) and aging treatment (AT) was proposed. The electrical conductivity, mechanical properties and microstructure of the Cu-0.5%Cr alloy were investigated, and the precipitation kinetics was analyzed. The results show that ECAP deformation and DCT treatment make the grains elongate and refine along the deformation shear direction. After four ECAP passes and DCT (12 h), the lamellar grains with the thickness of 200–300 nm were obtained, and the dislocation density was evidently increased. After the subsequent AT treatment, the fine Cr phase disperses uniformly at the grain boundaries and within the grains, and distributes on the matrix and along the dislocation lines. Compared with the solid solution, the results showed that after four passes of ECAP + DCT (12 h) + AT (425 ℃ × 1 h), the microhardness increased from 60.5 HV to 210 HV, the electrical conductivity changed from 27.9 % IACS to 69 % IACS, the strength improved from 262 MPa to 587 MPa, the elongation to failure decreased from 44.2 % to 21.9 %. The electrical conductivity was enhanced due to the second phase charge analysis showed that the scattering effect on electrons is weakened. The improvement of strength could be attributed to grain refinement and increase of dislocation density. Based on the Avrami empirical equation of precipitation kinetics analysis, the electrical conductivity equation and the phase change kinetics equation were established, and the relationship between aging time and electrical conductivity was established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ryd完成签到,获得积分10
刚刚
靳小静发布了新的文献求助10
1秒前
1秒前
xdmhv完成签到 ,获得积分10
1秒前
迟大猫应助李李李李李采纳,获得30
2秒前
2秒前
小谢完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
干净的芮发布了新的文献求助20
3秒前
王雪茹发布了新的文献求助10
5秒前
阳光发布了新的文献求助10
6秒前
开心牛油果完成签到,获得积分20
6秒前
nuli完成签到,获得积分10
8秒前
Lucas应助糊涂的清醒者采纳,获得10
8秒前
GuSiwen完成签到,获得积分10
8秒前
Coconut发布了新的文献求助10
8秒前
12完成签到,获得积分10
9秒前
无花果应助Somet1me采纳,获得10
9秒前
9秒前
shi hui应助乐乐乐乐乐乐采纳,获得10
9秒前
10秒前
10秒前
12秒前
Coconut完成签到,获得积分10
13秒前
小马甲应助Fonseca采纳,获得10
14秒前
重翠发布了新的文献求助10
14秒前
14秒前
一久便惯完成签到 ,获得积分10
15秒前
南风似潇发布了新的文献求助10
15秒前
16秒前
17秒前
宋声声发布了新的文献求助10
18秒前
18秒前
19秒前
糊涂的清醒者完成签到,获得积分10
19秒前
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483444
求助须知:如何正确求助?哪些是违规求助? 3072776
关于积分的说明 9127955
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517151
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797