Simultaneously enhancing mechanical properties and electrical conductivity of Cu-0.5%Cr alloy as 5G connector material

材料科学 合金 微观结构 电阻率和电导率 压痕硬度 复合材料 位错 降水 层状结构 冶金 晶界 变形(气象学) 相(物质) 电导率 电气工程 气象学 物理化学 工程类 有机化学 化学 物理
作者
Zhu Qi Chu,Kun Wei,Wei Wei,Igor Alexandrov,Xu Long An,Dan Wang,Xiang Kui Liu
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:948: 169750-169750 被引量:11
标识
DOI:10.1016/j.jallcom.2023.169750
摘要

With the rapid development of the 5 G communication, materials such as the high-speed backplane connector and the integrated circuit lead frame require higher strength and electrical conductivity. Copper alloys have been widely concerned due to their excellent electrical conductivity, thermal conductivity and good strength. A new method of preparing the Cu-0.5%Cr alloy by equal channel angular pressing (ECAP), deep cryogenic treatment (DCT) and aging treatment (AT) was proposed. The electrical conductivity, mechanical properties and microstructure of the Cu-0.5%Cr alloy were investigated, and the precipitation kinetics was analyzed. The results show that ECAP deformation and DCT treatment make the grains elongate and refine along the deformation shear direction. After four ECAP passes and DCT (12 h), the lamellar grains with the thickness of 200–300 nm were obtained, and the dislocation density was evidently increased. After the subsequent AT treatment, the fine Cr phase disperses uniformly at the grain boundaries and within the grains, and distributes on the matrix and along the dislocation lines. Compared with the solid solution, the results showed that after four passes of ECAP + DCT (12 h) + AT (425 ℃ × 1 h), the microhardness increased from 60.5 HV to 210 HV, the electrical conductivity changed from 27.9 % IACS to 69 % IACS, the strength improved from 262 MPa to 587 MPa, the elongation to failure decreased from 44.2 % to 21.9 %. The electrical conductivity was enhanced due to the second phase charge analysis showed that the scattering effect on electrons is weakened. The improvement of strength could be attributed to grain refinement and increase of dislocation density. Based on the Avrami empirical equation of precipitation kinetics analysis, the electrical conductivity equation and the phase change kinetics equation were established, and the relationship between aging time and electrical conductivity was established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维尼发布了新的文献求助10
刚刚
lalafish发布了新的文献求助10
1秒前
一颗酒窝完成签到 ,获得积分10
1秒前
4秒前
5秒前
6秒前
7秒前
7秒前
xiaomili发布了新的文献求助10
8秒前
9秒前
大个应助caiyuedong采纳,获得10
11秒前
11秒前
儒雅HR完成签到,获得积分10
11秒前
12秒前
鳗鱼友灵发布了新的文献求助10
12秒前
几米杨完成签到,获得积分10
12秒前
所所应助o10采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
8R60d8应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
聪明白秋应助科研通管家采纳,获得20
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
8R60d8应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
FashionBoy应助赵程程采纳,获得10
14秒前
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
柯一一应助科研通管家采纳,获得10
14秒前
Susan发布了新的文献求助10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502597
关于积分的说明 11109039
捐赠科研通 3233376
什么是DOI,文献DOI怎么找? 1787315
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122