Fetal health classification using LightGBM with Grid search based hyper parameter tuning

随机森林 Boosting(机器学习) 决策树 人工智能 计算机科学 超参数优化 逻辑回归 机器学习 心电图 梯度升压 统计分类 胎儿 胎心率 集成学习 医学 怀孕 支持向量机 生物 遗传学
作者
Vimala Nagabotu,Anupama Namburu
出处
期刊:Recent Patents on Engineering [Bentham Science]
卷期号:19 (1) 被引量:1
标识
DOI:10.2174/1872212118666230703155834
摘要

Background: Fetal health monitoring throughout pregnancy is challenging and complex. Complications in the fetal health not identified at the right time lead to mortality of the fetus as well the pregnant women. Hence, obstetricians check the fetal health state by monitoring the fetal heart rate (FHR). Cardiotocography (CTG) is a technique used by obstetricians to access the physical well-being of fetal during pregnancy. It provides information on the fetal heart rate and uterine respiration, which can assist in determining whether the fetus is normal or suspect or pathology. CTG data has typically been evaluated using machine learning (ML) algorithms in predicting the wellness of the fetal and speeding up the detection process. Methods: In this work, we developed LightGBM with a Grid search-based hyperparameter tuning model to predict fetal health classification. The classification results are analysed quantitatively using the performance measures, namely, precision, Recall, F1-Score, and Accuracy Comparisons were made between different classification models like Logistic Regression, Decision Tree, Random Forest, k-nearest neighbors, Bagging, ADA boosting, XG boosting, and LightGBM, which were trained with the CTG Dataset obtained by the patented fetal monitoring system of 2,216 data points from pregnant women in their third trimester available in the Kaggle dataset. The dataset contains three classes: normal, suspect, and pathology. Our proposed model will give better results in predicting fetal health classification. Results: In this paper, the performance of the proposed algorithm LightGBM is compared and experimented with various Machine learning Techniques namely LR, DT, RF, KNN, Boosting, Ada boosting, and XG Boost and the classification accuracy of the respective algorithms are 84%, 94%, 93%, 88%, 94%, 89%, 96%.The LightGBM achieved a performance of 97% and outperforms the former models. Conclusion: The LightGBM-based fetal health classification has been presented. Ensemble models were applied to the FHR dataset and presented the hybrid algorithm, namely Light GBM, and its application to fetal health classification. LightGBM has advantages that include fast training, improved performance, scale-up capabilities, and lesser memory usage than other ensemble models. The proposed model is more consistent and superior to other considered machine learning models and is suitable for the classification of fetal health based on FHR data. Finally, the outcomes of the multiple methods are compared using the same training and test data in order to verify the efficiency of LightGBM. The model can be further enhanced by making it hybrid by combining the advantages of different models and optimization techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ll完成签到,获得积分20
1秒前
霍巧凡发布了新的文献求助10
1秒前
beplayer1完成签到,获得积分10
2秒前
棕榈发布了新的文献求助10
3秒前
完美世界应助S1采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
sophia完成签到,获得积分10
5秒前
5秒前
Lyp888206发布了新的文献求助10
6秒前
7秒前
ll发布了新的文献求助10
8秒前
sophia发布了新的文献求助20
8秒前
复杂绝悟发布了新的文献求助10
9秒前
10秒前
爱雪的猫发布了新的文献求助10
10秒前
10秒前
王倩倩发布了新的文献求助20
12秒前
shary完成签到,获得积分10
12秒前
甜蜜骁发布了新的文献求助30
13秒前
祖老头发布了新的文献求助10
14秒前
英俊的铭应助起司猫采纳,获得10
14秒前
Double完成签到 ,获得积分10
14秒前
科研通AI6应助不安的凡桃采纳,获得10
14秒前
Owen应助棕榈采纳,获得10
16秒前
Sakurasamada发布了新的文献求助20
16秒前
16秒前
白羊完成签到,获得积分10
17秒前
17秒前
薛之谦的猫应助任性白秋采纳,获得10
17秒前
向日葵完成签到 ,获得积分10
17秒前
Lee完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
Lee发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594501
求助须知:如何正确求助?哪些是违规求助? 4680157
关于积分的说明 14813307
捐赠科研通 4647283
什么是DOI,文献DOI怎么找? 2534960
邀请新用户注册赠送积分活动 1503016
关于科研通互助平台的介绍 1469521