Fetal health classification using LightGBM with Grid search based hyper parameter tuning

随机森林 Boosting(机器学习) 决策树 人工智能 计算机科学 超参数优化 逻辑回归 机器学习 心电图 梯度升压 统计分类 胎儿 胎心率 集成学习 医学 怀孕 支持向量机 生物 遗传学
作者
Vimala Nagabotu,Anupama Namburu
出处
期刊:Recent Patents on Engineering [Bentham Science]
卷期号:19 (1) 被引量:1
标识
DOI:10.2174/1872212118666230703155834
摘要

Background: Fetal health monitoring throughout pregnancy is challenging and complex. Complications in the fetal health not identified at the right time lead to mortality of the fetus as well the pregnant women. Hence, obstetricians check the fetal health state by monitoring the fetal heart rate (FHR). Cardiotocography (CTG) is a technique used by obstetricians to access the physical well-being of fetal during pregnancy. It provides information on the fetal heart rate and uterine respiration, which can assist in determining whether the fetus is normal or suspect or pathology. CTG data has typically been evaluated using machine learning (ML) algorithms in predicting the wellness of the fetal and speeding up the detection process. Methods: In this work, we developed LightGBM with a Grid search-based hyperparameter tuning model to predict fetal health classification. The classification results are analysed quantitatively using the performance measures, namely, precision, Recall, F1-Score, and Accuracy Comparisons were made between different classification models like Logistic Regression, Decision Tree, Random Forest, k-nearest neighbors, Bagging, ADA boosting, XG boosting, and LightGBM, which were trained with the CTG Dataset obtained by the patented fetal monitoring system of 2,216 data points from pregnant women in their third trimester available in the Kaggle dataset. The dataset contains three classes: normal, suspect, and pathology. Our proposed model will give better results in predicting fetal health classification. Results: In this paper, the performance of the proposed algorithm LightGBM is compared and experimented with various Machine learning Techniques namely LR, DT, RF, KNN, Boosting, Ada boosting, and XG Boost and the classification accuracy of the respective algorithms are 84%, 94%, 93%, 88%, 94%, 89%, 96%.The LightGBM achieved a performance of 97% and outperforms the former models. Conclusion: The LightGBM-based fetal health classification has been presented. Ensemble models were applied to the FHR dataset and presented the hybrid algorithm, namely Light GBM, and its application to fetal health classification. LightGBM has advantages that include fast training, improved performance, scale-up capabilities, and lesser memory usage than other ensemble models. The proposed model is more consistent and superior to other considered machine learning models and is suitable for the classification of fetal health based on FHR data. Finally, the outcomes of the multiple methods are compared using the same training and test data in order to verify the efficiency of LightGBM. The model can be further enhanced by making it hybrid by combining the advantages of different models and optimization techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助lyz采纳,获得10
刚刚
北国雪未消完成签到 ,获得积分10
4秒前
柒八染完成签到 ,获得积分10
5秒前
qianci2009完成签到,获得积分10
6秒前
9秒前
InaZheng发布了新的文献求助10
14秒前
平常安雁完成签到 ,获得积分10
17秒前
TANGLX完成签到,获得积分10
28秒前
28秒前
yyy完成签到 ,获得积分10
29秒前
自由飞翔完成签到 ,获得积分10
30秒前
源晓现发布了新的文献求助10
32秒前
32秒前
TANGLX发布了新的文献求助20
35秒前
辛慧发布了新的文献求助10
36秒前
回首不再是少年完成签到,获得积分0
36秒前
changyongcheng完成签到 ,获得积分10
40秒前
绿袖子完成签到,获得积分10
43秒前
萝卜丁完成签到 ,获得积分0
45秒前
50秒前
Hiaoliem完成签到 ,获得积分10
50秒前
Wang发布了新的文献求助10
54秒前
辛慧完成签到,获得积分10
55秒前
科研人完成签到 ,获得积分10
59秒前
nicheng完成签到 ,获得积分0
1分钟前
多托郭完成签到 ,获得积分10
1分钟前
fanconi完成签到 ,获得积分10
1分钟前
lyj完成签到 ,获得积分10
1分钟前
1分钟前
慢歌完成签到 ,获得积分10
1分钟前
沙漠西瓜皮完成签到 ,获得积分10
1分钟前
guyuangyy发布了新的文献求助10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
YY完成签到 ,获得积分10
1分钟前
HCCha完成签到,获得积分10
2分钟前
guyuangyy完成签到,获得积分10
2分钟前
Artin发布了新的文献求助50
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356906
求助须知:如何正确求助?哪些是违规求助? 2980478
关于积分的说明 8694486
捐赠科研通 2662191
什么是DOI,文献DOI怎么找? 1457642
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665807