亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fetal health classification using LightGBM with Grid search based hyper parameter tuning

随机森林 Boosting(机器学习) 决策树 人工智能 计算机科学 超参数优化 逻辑回归 机器学习 心电图 梯度升压 统计分类 胎儿 胎心率 集成学习 医学 怀孕 支持向量机 生物 遗传学
作者
Vimala Nagabotu,Anupama Namburu
出处
期刊:Recent Patents on Engineering [Bentham Science]
卷期号:19 (1) 被引量:1
标识
DOI:10.2174/1872212118666230703155834
摘要

Background: Fetal health monitoring throughout pregnancy is challenging and complex. Complications in the fetal health not identified at the right time lead to mortality of the fetus as well the pregnant women. Hence, obstetricians check the fetal health state by monitoring the fetal heart rate (FHR). Cardiotocography (CTG) is a technique used by obstetricians to access the physical well-being of fetal during pregnancy. It provides information on the fetal heart rate and uterine respiration, which can assist in determining whether the fetus is normal or suspect or pathology. CTG data has typically been evaluated using machine learning (ML) algorithms in predicting the wellness of the fetal and speeding up the detection process. Methods: In this work, we developed LightGBM with a Grid search-based hyperparameter tuning model to predict fetal health classification. The classification results are analysed quantitatively using the performance measures, namely, precision, Recall, F1-Score, and Accuracy Comparisons were made between different classification models like Logistic Regression, Decision Tree, Random Forest, k-nearest neighbors, Bagging, ADA boosting, XG boosting, and LightGBM, which were trained with the CTG Dataset obtained by the patented fetal monitoring system of 2,216 data points from pregnant women in their third trimester available in the Kaggle dataset. The dataset contains three classes: normal, suspect, and pathology. Our proposed model will give better results in predicting fetal health classification. Results: In this paper, the performance of the proposed algorithm LightGBM is compared and experimented with various Machine learning Techniques namely LR, DT, RF, KNN, Boosting, Ada boosting, and XG Boost and the classification accuracy of the respective algorithms are 84%, 94%, 93%, 88%, 94%, 89%, 96%.The LightGBM achieved a performance of 97% and outperforms the former models. Conclusion: The LightGBM-based fetal health classification has been presented. Ensemble models were applied to the FHR dataset and presented the hybrid algorithm, namely Light GBM, and its application to fetal health classification. LightGBM has advantages that include fast training, improved performance, scale-up capabilities, and lesser memory usage than other ensemble models. The proposed model is more consistent and superior to other considered machine learning models and is suitable for the classification of fetal health based on FHR data. Finally, the outcomes of the multiple methods are compared using the same training and test data in order to verify the efficiency of LightGBM. The model can be further enhanced by making it hybrid by combining the advantages of different models and optimization techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助火星上向珊采纳,获得10
3秒前
30秒前
eden发布了新的文献求助10
36秒前
三三完成签到 ,获得积分10
36秒前
善学以致用应助eden采纳,获得10
1分钟前
1分钟前
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
hx发布了新的文献求助10
1分钟前
hx完成签到,获得积分10
1分钟前
1分钟前
坦率的语芙完成签到,获得积分10
1分钟前
1分钟前
2分钟前
过时的笙发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Gabriel发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
过时的笙完成签到,获得积分10
3分钟前
华冰发布了新的文献求助10
3分钟前
Gabriel完成签到,获得积分10
3分钟前
joysa完成签到,获得积分10
3分钟前
共享精神应助内向的昊焱采纳,获得10
3分钟前
浮游应助Gabriel采纳,获得10
3分钟前
思源应助科研通管家采纳,获得10
3分钟前
Tree_QD完成签到 ,获得积分10
4分钟前
小房子完成签到,获得积分10
4分钟前
4分钟前
斯文败类应助迷糊的鱼宝采纳,获得10
4分钟前
4分钟前
学生信的大叔完成签到,获得积分10
5分钟前
5分钟前
火星上向珊完成签到,获得积分10
5分钟前
5分钟前
飞_完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5314153
求助须知:如何正确求助?哪些是违规求助? 4457410
关于积分的说明 13867808
捐赠科研通 4346451
什么是DOI,文献DOI怎么找? 2387186
邀请新用户注册赠送积分活动 1381341
关于科研通互助平台的介绍 1350235