Fetal health classification using LightGBM with Grid search based hyper parameter tuning

随机森林 Boosting(机器学习) 决策树 人工智能 计算机科学 超参数优化 逻辑回归 机器学习 心电图 梯度升压 统计分类 胎儿 胎心率 集成学习 医学 怀孕 支持向量机 生物 遗传学
作者
Vimala Nagabotu,Anupama Namburu
出处
期刊:Recent Patents on Engineering [Bentham Science]
卷期号:19 (1) 被引量:1
标识
DOI:10.2174/1872212118666230703155834
摘要

Background: Fetal health monitoring throughout pregnancy is challenging and complex. Complications in the fetal health not identified at the right time lead to mortality of the fetus as well the pregnant women. Hence, obstetricians check the fetal health state by monitoring the fetal heart rate (FHR). Cardiotocography (CTG) is a technique used by obstetricians to access the physical well-being of fetal during pregnancy. It provides information on the fetal heart rate and uterine respiration, which can assist in determining whether the fetus is normal or suspect or pathology. CTG data has typically been evaluated using machine learning (ML) algorithms in predicting the wellness of the fetal and speeding up the detection process. Methods: In this work, we developed LightGBM with a Grid search-based hyperparameter tuning model to predict fetal health classification. The classification results are analysed quantitatively using the performance measures, namely, precision, Recall, F1-Score, and Accuracy Comparisons were made between different classification models like Logistic Regression, Decision Tree, Random Forest, k-nearest neighbors, Bagging, ADA boosting, XG boosting, and LightGBM, which were trained with the CTG Dataset obtained by the patented fetal monitoring system of 2,216 data points from pregnant women in their third trimester available in the Kaggle dataset. The dataset contains three classes: normal, suspect, and pathology. Our proposed model will give better results in predicting fetal health classification. Results: In this paper, the performance of the proposed algorithm LightGBM is compared and experimented with various Machine learning Techniques namely LR, DT, RF, KNN, Boosting, Ada boosting, and XG Boost and the classification accuracy of the respective algorithms are 84%, 94%, 93%, 88%, 94%, 89%, 96%.The LightGBM achieved a performance of 97% and outperforms the former models. Conclusion: The LightGBM-based fetal health classification has been presented. Ensemble models were applied to the FHR dataset and presented the hybrid algorithm, namely Light GBM, and its application to fetal health classification. LightGBM has advantages that include fast training, improved performance, scale-up capabilities, and lesser memory usage than other ensemble models. The proposed model is more consistent and superior to other considered machine learning models and is suitable for the classification of fetal health based on FHR data. Finally, the outcomes of the multiple methods are compared using the same training and test data in order to verify the efficiency of LightGBM. The model can be further enhanced by making it hybrid by combining the advantages of different models and optimization techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小鱼儿发布了新的文献求助10
刚刚
刚刚
1秒前
Moihan完成签到,获得积分10
1秒前
1秒前
一月平芜发布了新的文献求助10
4秒前
传奇3应助Kevin Huang采纳,获得10
4秒前
平淡道天发布了新的文献求助10
5秒前
忘忧发布了新的文献求助10
5秒前
能干宛秋发布了新的文献求助30
5秒前
6秒前
7秒前
呼吸第一口气的咽喉完成签到,获得积分10
7秒前
LegendThree完成签到,获得积分10
7秒前
卡卡完成签到 ,获得积分10
8秒前
10秒前
2389937250完成签到,获得积分10
10秒前
11秒前
11秒前
12341发布了新的文献求助20
11秒前
12秒前
YQP发布了新的文献求助20
13秒前
liuxuiaologn发布了新的文献求助10
13秒前
14秒前
he完成签到,获得积分10
14秒前
隽永完成签到 ,获得积分10
14秒前
15秒前
16秒前
哈哈发布了新的文献求助10
16秒前
16秒前
tt耶完成签到 ,获得积分10
16秒前
17秒前
LH发布了新的文献求助10
18秒前
xudanhong完成签到,获得积分20
19秒前
kingmantj发布了新的文献求助10
19秒前
SYLH应助jhw采纳,获得10
19秒前
20秒前
隽永关注了科研通微信公众号
20秒前
丘比特应助he采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420