Escape from T-cell targeting immunotherapies in acute myeloid leukemia

免疫疗法 免疫系统 肿瘤微环境 T细胞 髓系白血病 免疫学 髓样 癌症研究 细胞毒性T细胞 白血病 生物 免疫检查点 医学 生物化学 体外
作者
Jayakumar Vadakekolathu,Sergio Rutella
出处
期刊:Blood [American Society of Hematology]
被引量:17
标识
DOI:10.1182/blood.2023019961
摘要

Single-cell and spatial multimodal technologies have propelled discoveries of the solid tumor microenvironment (TME) molecular features and their correlation with clinical response and resistance to immunotherapy. Computational tools are incessantly being developed to characterize tumor-infiltrating immune cells and to model tumor immune escape. These advances have led to substantial research into T-cell hypofunctional states in the TME and their reinvigoration with T cell-targeting approaches, including checkpoint inhibitors (CPI). Until recently, we lacked a high-dimensional picture of the acute myeloid leukemia (AML) TME, including compositional and functional differences in immune cells between disease onset and post-chemotherapy or post-transplantation relapse, and the dynamic interplay between immune cells and AML blasts at various maturation stages. AML subgroups with heightened interferon (IFN)-g signaling were shown to derive clinical benefit from CD123 x CD3 bispecific DART molecules and CPI, whilst being less likely to respond to standard-of-care cytotoxic chemotherapy. In this Review, we first highlight recent progress into deciphering immune effector states in AML (including T-cell exhaustion and senescence), oncogenic signaling mechanisms that could reduce the susceptibility of AML cells to T cell-mediated killing and the dichotomous roles of type I and II IFN in anti-tumor immunity. In the second part, we discuss how this knowledge could be translated into opportunities to manipulate the AML TME with the aim to overcome resistance to CPI and other T-cell immunotherapies, building on recent success stories in the solid tumor field, and we provide an outlook for the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆11完成签到,获得积分10
1秒前
君君完成签到,获得积分10
1秒前
1秒前
完美世界应助难过的安双采纳,获得10
5秒前
6秒前
朴实的面包完成签到 ,获得积分10
7秒前
8秒前
张秋雨完成签到,获得积分20
9秒前
10秒前
knn发布了新的文献求助10
11秒前
15秒前
gdh发布了新的文献求助10
15秒前
18秒前
18秒前
20秒前
义气的钥匙完成签到,获得积分10
20秒前
20秒前
孟祥勤完成签到,获得积分10
20秒前
20秒前
难过的安双完成签到,获得积分10
21秒前
21秒前
初昀杭发布了新的文献求助10
21秒前
许可发布了新的文献求助10
23秒前
萝卜发布了新的文献求助10
24秒前
科研通AI2S应助长度2到采纳,获得10
24秒前
母广明完成签到 ,获得积分10
25秒前
27秒前
lingting完成签到 ,获得积分10
30秒前
31秒前
萝卜完成签到,获得积分10
31秒前
32秒前
1271470003发布了新的文献求助10
32秒前
34秒前
XuXIkai发布了新的文献求助10
36秒前
36秒前
风巽雷震之歌完成签到,获得积分10
37秒前
41秒前
zzq发布了新的文献求助10
41秒前
鱼鱼鱼完成签到 ,获得积分10
42秒前
正直三颜完成签到,获得积分10
43秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137758
求助须知:如何正确求助?哪些是违规求助? 2788672
关于积分的说明 7787968
捐赠科研通 2445026
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043