A Novel ECG-Based Deep Learning Algorithm to Predict Cardiomyopathy in Patients With Premature Ventricular Complexes

射血分数 医学 心脏病学 内科学 心肌病 接收机工作特性 QRS波群 窦性心律 算法 烧蚀 曲线下面积 人口统计学的 心力衰竭 心房颤动 社会学 人口学 计算机科学
作者
Joshua Lampert,Akhil Vaid,William Whang,Jacob S. Koruth,Marc A. Miller,Marie-Noelle S. Langan,Daniel Musikantow,Mohit K. Turagam,Abhishek Maan,Iwanari Kawamura,Srinivas R. Dukkipati,Girish N. Nadkarni,Vivek Y. Reddy
出处
期刊:JACC: Clinical Electrophysiology [Elsevier BV]
卷期号:9 (8): 1437-1451 被引量:1
标识
DOI:10.1016/j.jacep.2023.05.025
摘要

Premature ventricular complexes (PVCs) are prevalent and, although often benign, they may lead to PVC-induced cardiomyopathy. We created a deep-learning algorithm to predict left ventricular ejection fraction (LVEF) reduction in patients with PVCs from a 12-lead electrocardiogram (ECG). This study aims to assess a deep-learning model to predict cardiomyopathy among patients with PVCs. We used electronic medical records from 5 hospitals and identified ECGs from adults with documented PVCs. Internal training and testing were performed at one hospital. External validation was performed with the others. The primary outcome was first diagnosis of LVEF ≤40% within 6 months. The dataset included 383,514 ECGs, of which 14,241 remained for analysis. We analyzed area under the receiver operating curves and explainability plots for representative patients, algorithm prediction, PVC burden, and demographics in a multivariable Cox model to assess independent predictors for cardiomyopathy. Among the 14,241-patient cohort (age 67.6 ± 14.8 years; female 43.8%; White 29.5%, Black 8.6%, Hispanic 6.5%, Asian 2.2%), 22.9% experienced reductions in LVEF to ≤40% within 6 months. The model predicted reductions in LVEF to ≤40% with area under the receiver operating curve of 0.79 (95% CI: 0.77-0.81). The gradient weighted class activation map explainability framework highlighted the sinus rhythm QRS complex-ST segment. In patients who underwent successful PVC ablation there was a post-ablation improvement in LVEF with resolution of cardiomyopathy in most (89%) patients. Deep-learning on the 12-lead ECG alone can accurately predict new-onset cardiomyopathy in patients with PVCs independent of PVC burden. Model prediction performed well across sex and race, relying on the QRS complex/ST-segment in sinus rhythm, not PVC morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
姜依涵发布了新的文献求助10
1秒前
东方树叶不如冰红茶完成签到 ,获得积分10
2秒前
3秒前
3秒前
5秒前
起个名不麻烦完成签到 ,获得积分10
7秒前
ZQP发布了新的文献求助10
9秒前
浮游应助xiaoxiao采纳,获得10
10秒前
乐乐发布了新的文献求助10
10秒前
11秒前
传奇3应助兴奋以蓝采纳,获得10
11秒前
Hello应助ZQP采纳,获得10
12秒前
和谐语海发布了新的文献求助30
13秒前
快乐酒窝完成签到,获得积分10
13秒前
无花果应助任性的皮皮虾采纳,获得10
14秒前
翁醉山完成签到 ,获得积分10
15秒前
大头老婆完成签到 ,获得积分10
16秒前
顾矜应助乐乐采纳,获得10
16秒前
柔弱又夏完成签到,获得积分10
17秒前
晴123发布了新的文献求助10
18秒前
沙珠发布了新的文献求助10
18秒前
19秒前
20秒前
浮游应助MutantKitten采纳,获得10
23秒前
yue完成签到,获得积分10
23秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
GPTea应助科研通管家采纳,获得20
24秒前
李健应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
Akim应助科研通管家采纳,获得30
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
小蜻蜓应助科研通管家采纳,获得30
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720