A Novel ECG-Based Deep Learning Algorithm to Predict Cardiomyopathy in Patients With Premature Ventricular Complexes

射血分数 医学 心脏病学 内科学 心肌病 接收机工作特性 QRS波群 窦性心律 算法 烧蚀 曲线下面积 人口统计学的 心力衰竭 心房颤动 社会学 人口学 计算机科学
作者
Joshua Lampert,Akhil Vaid,William Whang,Jacob S. Koruth,Marc A. Miller,Marie-Noelle S. Langan,Daniel Musikantow,Mohit K. Turagam,Abhishek Maan,Iwanari Kawamura,Srinivas R. Dukkipati,Girish N. Nadkarni,Vivek Y. Reddy
出处
期刊:JACC: Clinical Electrophysiology [Elsevier BV]
卷期号:9 (8): 1437-1451 被引量:1
标识
DOI:10.1016/j.jacep.2023.05.025
摘要

Premature ventricular complexes (PVCs) are prevalent and, although often benign, they may lead to PVC-induced cardiomyopathy. We created a deep-learning algorithm to predict left ventricular ejection fraction (LVEF) reduction in patients with PVCs from a 12-lead electrocardiogram (ECG). This study aims to assess a deep-learning model to predict cardiomyopathy among patients with PVCs. We used electronic medical records from 5 hospitals and identified ECGs from adults with documented PVCs. Internal training and testing were performed at one hospital. External validation was performed with the others. The primary outcome was first diagnosis of LVEF ≤40% within 6 months. The dataset included 383,514 ECGs, of which 14,241 remained for analysis. We analyzed area under the receiver operating curves and explainability plots for representative patients, algorithm prediction, PVC burden, and demographics in a multivariable Cox model to assess independent predictors for cardiomyopathy. Among the 14,241-patient cohort (age 67.6 ± 14.8 years; female 43.8%; White 29.5%, Black 8.6%, Hispanic 6.5%, Asian 2.2%), 22.9% experienced reductions in LVEF to ≤40% within 6 months. The model predicted reductions in LVEF to ≤40% with area under the receiver operating curve of 0.79 (95% CI: 0.77-0.81). The gradient weighted class activation map explainability framework highlighted the sinus rhythm QRS complex-ST segment. In patients who underwent successful PVC ablation there was a post-ablation improvement in LVEF with resolution of cardiomyopathy in most (89%) patients. Deep-learning on the 12-lead ECG alone can accurately predict new-onset cardiomyopathy in patients with PVCs independent of PVC burden. Model prediction performed well across sex and race, relying on the QRS complex/ST-segment in sinus rhythm, not PVC morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fiber发布了新的文献求助20
1秒前
HM发布了新的文献求助10
1秒前
JohnTong发布了新的文献求助10
1秒前
2秒前
2秒前
乐观若烟发布了新的文献求助10
3秒前
zhhl2006完成签到,获得积分10
3秒前
zhouzhou完成签到,获得积分10
3秒前
啊宁完成签到 ,获得积分10
3秒前
JoshuaChen发布了新的文献求助10
3秒前
开朗满天完成签到 ,获得积分10
4秒前
4秒前
4秒前
6秒前
赘婿应助Max采纳,获得10
6秒前
6秒前
Erislastem完成签到,获得积分10
6秒前
volcanoes完成签到,获得积分10
6秒前
蘇q完成签到 ,获得积分10
6秒前
Encore发布了新的文献求助10
6秒前
慈祥的翠梅完成签到,获得积分10
6秒前
7秒前
李爱国应助王不王采纳,获得10
7秒前
苏silence发布了新的文献求助10
7秒前
万能图书馆应助爱因斯宣采纳,获得10
7秒前
今后应助YZzzJ采纳,获得10
7秒前
如意雅山发布了新的文献求助10
7秒前
桢桢树发布了新的文献求助10
8秒前
戚薇发布了新的文献求助10
8秒前
8秒前
杰杰完成签到,获得积分10
9秒前
SciGPT应助gnr2000采纳,获得30
9秒前
我没那么郝完成签到,获得积分10
9秒前
亚琳发布了新的文献求助10
9秒前
9秒前
你想不想变成一粒芝麻完成签到,获得积分10
10秒前
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582