亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel ECG-Based Deep Learning Algorithm to Predict Cardiomyopathy in Patients With Premature Ventricular Complexes

射血分数 医学 心脏病学 内科学 心肌病 接收机工作特性 QRS波群 窦性心律 算法 烧蚀 曲线下面积 人口统计学的 心力衰竭 心房颤动 社会学 人口学 计算机科学
作者
Joshua Lampert,Akhil Vaid,William Whang,Jacob S. Koruth,Marc A. Miller,Marie-Noelle S. Langan,Daniel Musikantow,Mohit K. Turagam,Abhishek Maan,Iwanari Kawamura,Srinivas R. Dukkipati,Girish N. Nadkarni,Vivek Y. Reddy
出处
期刊:JACC: Clinical Electrophysiology [Elsevier]
卷期号:9 (8): 1437-1451 被引量:1
标识
DOI:10.1016/j.jacep.2023.05.025
摘要

Premature ventricular complexes (PVCs) are prevalent and, although often benign, they may lead to PVC-induced cardiomyopathy. We created a deep-learning algorithm to predict left ventricular ejection fraction (LVEF) reduction in patients with PVCs from a 12-lead electrocardiogram (ECG). This study aims to assess a deep-learning model to predict cardiomyopathy among patients with PVCs. We used electronic medical records from 5 hospitals and identified ECGs from adults with documented PVCs. Internal training and testing were performed at one hospital. External validation was performed with the others. The primary outcome was first diagnosis of LVEF ≤40% within 6 months. The dataset included 383,514 ECGs, of which 14,241 remained for analysis. We analyzed area under the receiver operating curves and explainability plots for representative patients, algorithm prediction, PVC burden, and demographics in a multivariable Cox model to assess independent predictors for cardiomyopathy. Among the 14,241-patient cohort (age 67.6 ± 14.8 years; female 43.8%; White 29.5%, Black 8.6%, Hispanic 6.5%, Asian 2.2%), 22.9% experienced reductions in LVEF to ≤40% within 6 months. The model predicted reductions in LVEF to ≤40% with area under the receiver operating curve of 0.79 (95% CI: 0.77-0.81). The gradient weighted class activation map explainability framework highlighted the sinus rhythm QRS complex-ST segment. In patients who underwent successful PVC ablation there was a post-ablation improvement in LVEF with resolution of cardiomyopathy in most (89%) patients. Deep-learning on the 12-lead ECG alone can accurately predict new-onset cardiomyopathy in patients with PVCs independent of PVC burden. Model prediction performed well across sex and race, relying on the QRS complex/ST-segment in sinus rhythm, not PVC morphology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形不凡完成签到,获得积分10
3秒前
温暖的乐蓉关注了科研通微信公众号
16秒前
李桂芳完成签到,获得积分10
17秒前
28秒前
急诊守夜人完成签到 ,获得积分10
30秒前
34秒前
52秒前
robin完成签到 ,获得积分10
54秒前
万能图书馆应助HH采纳,获得10
1分钟前
吾日三省吾身完成签到 ,获得积分10
1分钟前
英姑应助风华正茂采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得50
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Lulu发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
HH发布了新的文献求助10
2分钟前
Lulu完成签到,获得积分10
2分钟前
Yuki完成签到 ,获得积分10
2分钟前
CC完成签到,获得积分10
2分钟前
badyoungboy完成签到,获得积分10
2分钟前
badyoungboy发布了新的文献求助10
3分钟前
北陌完成签到 ,获得积分10
3分钟前
领导范儿应助郭楠楠采纳,获得10
3分钟前
完美世界应助木棉采纳,获得10
3分钟前
Nature应助yangjian采纳,获得10
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
安静的从梦完成签到 ,获得积分10
3分钟前
颜卿完成签到 ,获得积分10
4分钟前
zh完成签到,获得积分10
4分钟前
youy完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287