A Novel ECG-Based Deep Learning Algorithm to Predict Cardiomyopathy in Patients With Premature Ventricular Complexes

射血分数 医学 心脏病学 内科学 心肌病 接收机工作特性 QRS波群 窦性心律 算法 烧蚀 曲线下面积 人口统计学的 心力衰竭 心房颤动 社会学 人口学 计算机科学
作者
Joshua Lampert,Akhil Vaid,William Whang,Jacob S. Koruth,Marc A. Miller,Marie-Noelle S. Langan,Daniel Musikantow,Mohit K. Turagam,Abhishek Maan,Iwanari Kawamura,Srinivas R. Dukkipati,Girish N. Nadkarni,Vivek Y. Reddy
出处
期刊:JACC: Clinical Electrophysiology [Elsevier]
卷期号:9 (8): 1437-1451 被引量:1
标识
DOI:10.1016/j.jacep.2023.05.025
摘要

Premature ventricular complexes (PVCs) are prevalent and, although often benign, they may lead to PVC-induced cardiomyopathy. We created a deep-learning algorithm to predict left ventricular ejection fraction (LVEF) reduction in patients with PVCs from a 12-lead electrocardiogram (ECG). This study aims to assess a deep-learning model to predict cardiomyopathy among patients with PVCs. We used electronic medical records from 5 hospitals and identified ECGs from adults with documented PVCs. Internal training and testing were performed at one hospital. External validation was performed with the others. The primary outcome was first diagnosis of LVEF ≤40% within 6 months. The dataset included 383,514 ECGs, of which 14,241 remained for analysis. We analyzed area under the receiver operating curves and explainability plots for representative patients, algorithm prediction, PVC burden, and demographics in a multivariable Cox model to assess independent predictors for cardiomyopathy. Among the 14,241-patient cohort (age 67.6 ± 14.8 years; female 43.8%; White 29.5%, Black 8.6%, Hispanic 6.5%, Asian 2.2%), 22.9% experienced reductions in LVEF to ≤40% within 6 months. The model predicted reductions in LVEF to ≤40% with area under the receiver operating curve of 0.79 (95% CI: 0.77-0.81). The gradient weighted class activation map explainability framework highlighted the sinus rhythm QRS complex-ST segment. In patients who underwent successful PVC ablation there was a post-ablation improvement in LVEF with resolution of cardiomyopathy in most (89%) patients. Deep-learning on the 12-lead ECG alone can accurately predict new-onset cardiomyopathy in patients with PVCs independent of PVC burden. Model prediction performed well across sex and race, relying on the QRS complex/ST-segment in sinus rhythm, not PVC morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sy发布了新的文献求助10
刚刚
科研通AI2S应助LY采纳,获得10
刚刚
我是老大应助美满的晓丝采纳,获得10
1秒前
1秒前
2秒前
3秒前
three完成签到,获得积分20
3秒前
张证彤完成签到,获得积分20
4秒前
小二郎应助hhh采纳,获得10
4秒前
小绵羊完成签到 ,获得积分10
5秒前
Carey发布了新的文献求助10
5秒前
所所应助纪鹏飞采纳,获得10
5秒前
完美世界应助mm采纳,获得10
6秒前
朴实寻真完成签到 ,获得积分10
6秒前
香蕉觅云应助靓丽的思真采纳,获得10
6秒前
6秒前
GK发布了新的文献求助10
7秒前
zzzzzc发布了新的文献求助30
8秒前
加油努力完成签到,获得积分20
8秒前
8秒前
8秒前
Future完成签到,获得积分10
10秒前
10秒前
研友_rLmNXn发布了新的文献求助10
10秒前
11秒前
终止子完成签到,获得积分10
11秒前
陈1992完成签到 ,获得积分10
11秒前
俭朴紫南发布了新的文献求助10
11秒前
12秒前
GK完成签到,获得积分10
12秒前
12秒前
我的小宇宙呢完成签到,获得积分10
13秒前
踏实乌冬面完成签到,获得积分10
13秒前
okk完成签到 ,获得积分10
13秒前
14秒前
加油努力发布了新的文献求助30
14秒前
14秒前
DumBell发布了新的文献求助10
14秒前
纵念完成签到,获得积分10
15秒前
冯xiaoni发布了新的文献求助10
15秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328628
求助须知:如何正确求助?哪些是违规求助? 2958733
关于积分的说明 8591457
捐赠科研通 2637020
什么是DOI,文献DOI怎么找? 1443279
科研通“疑难数据库(出版商)”最低求助积分说明 668633
邀请新用户注册赠送积分活动 655938