A Practical Contrastive Learning Framework for Single-Image Super-Resolution

计算机科学 嵌入 人工智能 水准点(测量) 特征(语言学) 样品(材料) 编码(集合论) 背景(考古学) 卷积神经网络 特征学习 图像(数学) 模式识别(心理学) 机器学习 鉴别器 自然语言处理 探测器 古生物学 哲学 集合(抽象数据类型) 化学 生物 程序设计语言 地理 电信 色谱法 语言学 大地测量学
作者
Gang Wu,Junjun Jiang,Xianming Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:31
标识
DOI:10.1109/tnnls.2023.3290038
摘要

Contrastive learning has achieved remarkable success on various high-level tasks, but there are fewer contrastive learning-based methods proposed for low-level tasks. It is challenging to adopt vanilla contrastive learning technologies proposed for high-level visual tasks to low-level image restoration problems straightly. Because the acquired high-level global visual representations are insufficient for low-level tasks requiring rich texture and context information. In this article, we investigate the contrastive learning-based single-image super-resolution (SISR) from two perspectives: positive and negative sample construction and feature embedding. The existing methods take naive sample construction approaches (e.g., considering the low-quality input as a negative sample and the ground truth as a positive sample) and adopt a prior model (e.g., pretrained very deep convolutional networks proposed by visual geometry group (VGG) model) to obtain the feature embedding. To this end, we propose a practical contrastive learning framework for SISR (PCL-SR). We involve the generation of many informative positive and hard negative samples in frequency space. Instead of utilizing an additional pretrained network, we design a simple but effective embedding network inherited from the discriminator network, which is more task-friendly. Compared with the existing benchmark methods, we retrain them by our proposed PCL-SR framework and achieve superior performance. Extensive experiments have been conducted to show the effectiveness and technical contributions of our proposed PCL-SR thorough ablation studies. The code and resulting models will be released via https://github.com/Aitical/PCL-SISR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泉竹晓筱完成签到,获得积分10
1秒前
2秒前
2秒前
奥利奥利奥完成签到 ,获得积分10
2秒前
lailai完成签到,获得积分10
2秒前
Min完成签到,获得积分10
3秒前
3秒前
3秒前
yyyy发布了新的文献求助30
4秒前
April驳回了归尘应助
4秒前
Yyyyyyyyy应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
yar应助科研通管家采纳,获得10
4秒前
4秒前
Gauss应助科研通管家采纳,获得30
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得20
4秒前
Hello应助科研通管家采纳,获得10
5秒前
缓慢如南应助科研通管家采纳,获得10
5秒前
栀夏完成签到,获得积分10
5秒前
yar应助科研通管家采纳,获得10
5秒前
桐桐应助杨杨采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
yar应助科研通管家采纳,获得10
5秒前
iNk应助科研通管家采纳,获得20
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
musejie应助科研通管家采纳,获得10
5秒前
自信夜春完成签到,获得积分10
5秒前
思源应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
六六安安完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582