Identification and analysis of autism spectrum disorder via large‐scale dynamic functional network connectivity

自闭症谱系障碍 动态功能连接 自闭症 认知 滑动窗口协议 心理学 模式识别(心理学) 神经科学 人工智能 计算机科学 功能连接 认知心理学 窗口(计算) 发展心理学 操作系统
作者
Wenwen Zhuang,Hai Jia,Yunhong Liu,Jing Cong,Kai Chen,Dezhong Yao,Xiaodong Kang,Peng Xu,Tao Zhang
出处
期刊:Autism Research [Wiley]
卷期号:16 (8): 1512-1526 被引量:12
标识
DOI:10.1002/aur.2974
摘要

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with severe cognitive impairment. Several studies have reported that brain functional network connectivity (FNC) has great potential for identifying ASD from healthy control (HC) and revealing the relationships between the brain and behaviors of ASD. However, few studies have explored dynamic large-scale FNC as a feature to identify individuals with ASD. This study used a time-sliding window method to study the dynamic FNC (dFNC) on the resting-state fMRI. To avoid arbitrarily determining the window length, we set a window length range of 10-75 TRs (TR = 2 s). We constructed linear support vector machine classifiers for all window length conditions. Using a nested 10-fold cross-validation framework, we obtained a grand average accuracy of 94.88% across window length conditions, which is higher than those reported in previous studies. In addition, we determined the optimal window length using the highest classification accuracy of 97.77%. Based on the optimal window length, we found that the dFNCs were located mainly in dorsal and ventral attention networks (DAN and VAN) and exhibited the highest weight in classification. Specifically, we found that the dFNC between DAN and temporal orbitofrontal network (TOFN) was significantly negatively correlated with social scores of ASD. Finally, using the dFNCs with high classification weights as features, we construct a model to predict the clinical score of ASD. Overall, our findings demonstrated that the dFNC could be a potential biomarker to identify ASD and provide new perspectives to detect cognitive changes in ASD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AA发布了新的文献求助10
1秒前
2秒前
pphhhhaannn完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助20
3秒前
搜集达人应助明亮无颜采纳,获得30
3秒前
4秒前
希望天下0贩的0应助cy采纳,获得10
4秒前
海狗发布了新的文献求助10
4秒前
wbj0722完成签到,获得积分10
5秒前
会飞的鱼完成签到,获得积分10
5秒前
pphhhhaannn发布了新的文献求助10
5秒前
bigxianyu发布了新的文献求助10
6秒前
领导范儿应助有一颗卤蛋采纳,获得10
6秒前
6秒前
Ava应助涛涛采纳,获得10
6秒前
高大绝义发布了新的文献求助20
6秒前
小冬瓜发布了新的文献求助10
7秒前
岁月如风完成签到,获得积分10
7秒前
燕不留声完成签到 ,获得积分10
8秒前
8秒前
9秒前
香蕉觅云应助科研通管家采纳,获得30
10秒前
tbbb完成签到,获得积分10
10秒前
5t5应助科研通管家采纳,获得10
10秒前
10秒前
小马甲应助科研通管家采纳,获得30
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
传统的凝天完成签到,获得积分10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI5应助angelsknight采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771