Identification and analysis of autism spectrum disorder via large‐scale dynamic functional network connectivity

自闭症谱系障碍 动态功能连接 自闭症 认知 滑动窗口协议 心理学 模式识别(心理学) 神经科学 人工智能 计算机科学 功能连接 认知心理学 窗口(计算) 发展心理学 操作系统
作者
Wenwen Zhuang,Hai Jia,Yunhong Liu,Jing Cong,Kai Chen,Dezhong Yao,Xiaodong Kang,Peng Xu,Tao Zhang
出处
期刊:Autism Research [Wiley]
卷期号:16 (8): 1512-1526 被引量:6
标识
DOI:10.1002/aur.2974
摘要

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with severe cognitive impairment. Several studies have reported that brain functional network connectivity (FNC) has great potential for identifying ASD from healthy control (HC) and revealing the relationships between the brain and behaviors of ASD. However, few studies have explored dynamic large-scale FNC as a feature to identify individuals with ASD. This study used a time-sliding window method to study the dynamic FNC (dFNC) on the resting-state fMRI. To avoid arbitrarily determining the window length, we set a window length range of 10-75 TRs (TR = 2 s). We constructed linear support vector machine classifiers for all window length conditions. Using a nested 10-fold cross-validation framework, we obtained a grand average accuracy of 94.88% across window length conditions, which is higher than those reported in previous studies. In addition, we determined the optimal window length using the highest classification accuracy of 97.77%. Based on the optimal window length, we found that the dFNCs were located mainly in dorsal and ventral attention networks (DAN and VAN) and exhibited the highest weight in classification. Specifically, we found that the dFNC between DAN and temporal orbitofrontal network (TOFN) was significantly negatively correlated with social scores of ASD. Finally, using the dFNCs with high classification weights as features, we construct a model to predict the clinical score of ASD. Overall, our findings demonstrated that the dFNC could be a potential biomarker to identify ASD and provide new perspectives to detect cognitive changes in ASD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝贝完成签到,获得积分10
1秒前
哒哒发布了新的文献求助10
2秒前
orixero应助短巷采纳,获得10
3秒前
3秒前
小王同学完成签到 ,获得积分10
4秒前
空山新雨完成签到,获得积分10
4秒前
hmx发布了新的文献求助10
5秒前
李爱国应助煞笔导去死啊采纳,获得10
5秒前
xxl完成签到 ,获得积分10
5秒前
7秒前
忧郁绣连应助哒哒采纳,获得10
9秒前
9秒前
重要谷冬发布了新的文献求助10
9秒前
维周之桢完成签到,获得积分10
10秒前
rmrb完成签到,获得积分10
10秒前
调研昵称发布了新的文献求助10
13秒前
Agnesma完成签到,获得积分10
16秒前
18秒前
可爱的函函应助高小羊采纳,获得10
19秒前
23秒前
yao完成签到,获得积分10
24秒前
27秒前
dd完成签到 ,获得积分10
27秒前
隐形曼青应助马楼采纳,获得10
30秒前
sparks完成签到 ,获得积分10
32秒前
周shang发布了新的文献求助10
33秒前
34秒前
李健应助卡戎529采纳,获得10
34秒前
35秒前
张靖超完成签到 ,获得积分10
35秒前
yye完成签到,获得积分10
37秒前
39秒前
39秒前
诚信小馒头完成签到 ,获得积分10
39秒前
tuanheqi应助pursuing采纳,获得100
41秒前
莫飞发布了新的文献求助10
42秒前
朴实若灵完成签到,获得积分20
43秒前
思源发布了新的文献求助30
44秒前
高小羊发布了新的文献求助10
45秒前
石人达发布了新的文献求助30
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079