Identification and analysis of autism spectrum disorder via large‐scale dynamic functional network connectivity

自闭症谱系障碍 动态功能连接 自闭症 认知 滑动窗口协议 心理学 模式识别(心理学) 神经科学 人工智能 计算机科学 功能连接 认知心理学 窗口(计算) 发展心理学 操作系统
作者
Wenwen Zhuang,Hai Jia,Yunhong Liu,Jing Cong,Kai Chen,Dezhong Yao,Xiaodong Kang,Peng Xu,Tao Zhang
出处
期刊:Autism Research [Wiley]
卷期号:16 (8): 1512-1526 被引量:12
标识
DOI:10.1002/aur.2974
摘要

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with severe cognitive impairment. Several studies have reported that brain functional network connectivity (FNC) has great potential for identifying ASD from healthy control (HC) and revealing the relationships between the brain and behaviors of ASD. However, few studies have explored dynamic large-scale FNC as a feature to identify individuals with ASD. This study used a time-sliding window method to study the dynamic FNC (dFNC) on the resting-state fMRI. To avoid arbitrarily determining the window length, we set a window length range of 10-75 TRs (TR = 2 s). We constructed linear support vector machine classifiers for all window length conditions. Using a nested 10-fold cross-validation framework, we obtained a grand average accuracy of 94.88% across window length conditions, which is higher than those reported in previous studies. In addition, we determined the optimal window length using the highest classification accuracy of 97.77%. Based on the optimal window length, we found that the dFNCs were located mainly in dorsal and ventral attention networks (DAN and VAN) and exhibited the highest weight in classification. Specifically, we found that the dFNC between DAN and temporal orbitofrontal network (TOFN) was significantly negatively correlated with social scores of ASD. Finally, using the dFNCs with high classification weights as features, we construct a model to predict the clinical score of ASD. Overall, our findings demonstrated that the dFNC could be a potential biomarker to identify ASD and provide new perspectives to detect cognitive changes in ASD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
汉堡包应助懒觉大王采纳,获得10
2秒前
JamesPei应助SW采纳,获得10
2秒前
刻苦冬菱完成签到,获得积分10
2秒前
xiaohunagya发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
田様应助湛湛采纳,获得10
4秒前
pluto应助123123123采纳,获得10
4秒前
Iso完成签到,获得积分10
4秒前
4秒前
未来发布了新的文献求助10
4秒前
领导范儿应助YC_Kao采纳,获得10
6秒前
A阿澍完成签到,获得积分10
6秒前
广阔天地完成签到 ,获得积分10
6秒前
7秒前
Superman完成签到 ,获得积分10
7秒前
Paradox发布了新的文献求助10
7秒前
Paradox发布了新的文献求助10
7秒前
Paradox发布了新的文献求助10
7秒前
猪猪hero发布了新的文献求助10
7秒前
多妈完成签到,获得积分10
8秒前
8秒前
999完成签到 ,获得积分10
9秒前
科研小菜鸡完成签到,获得积分10
9秒前
李丽发布了新的文献求助10
9秒前
9秒前
科研白菜发布了新的文献求助10
10秒前
summer1z完成签到,获得积分10
10秒前
Iso发布了新的文献求助10
10秒前
衣吾余应助AlbertCoA采纳,获得10
11秒前
1147468624完成签到,获得积分20
11秒前
zxy完成签到,获得积分10
11秒前
TQY发布了新的文献求助10
11秒前
Dora发布了新的文献求助30
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355