Identification and analysis of autism spectrum disorder via large‐scale dynamic functional network connectivity

自闭症谱系障碍 动态功能连接 自闭症 认知 滑动窗口协议 心理学 模式识别(心理学) 神经科学 人工智能 计算机科学 功能连接 认知心理学 窗口(计算) 发展心理学 操作系统
作者
Wenwen Zhuang,Hai Jia,Yunhong Liu,Jing Cong,Kai Chen,Dezhong Yao,Xiaodong Kang,Peng Xu,Tao Zhang
出处
期刊:Autism Research [Wiley]
卷期号:16 (8): 1512-1526 被引量:14
标识
DOI:10.1002/aur.2974
摘要

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with severe cognitive impairment. Several studies have reported that brain functional network connectivity (FNC) has great potential for identifying ASD from healthy control (HC) and revealing the relationships between the brain and behaviors of ASD. However, few studies have explored dynamic large-scale FNC as a feature to identify individuals with ASD. This study used a time-sliding window method to study the dynamic FNC (dFNC) on the resting-state fMRI. To avoid arbitrarily determining the window length, we set a window length range of 10-75 TRs (TR = 2 s). We constructed linear support vector machine classifiers for all window length conditions. Using a nested 10-fold cross-validation framework, we obtained a grand average accuracy of 94.88% across window length conditions, which is higher than those reported in previous studies. In addition, we determined the optimal window length using the highest classification accuracy of 97.77%. Based on the optimal window length, we found that the dFNCs were located mainly in dorsal and ventral attention networks (DAN and VAN) and exhibited the highest weight in classification. Specifically, we found that the dFNC between DAN and temporal orbitofrontal network (TOFN) was significantly negatively correlated with social scores of ASD. Finally, using the dFNCs with high classification weights as features, we construct a model to predict the clinical score of ASD. Overall, our findings demonstrated that the dFNC could be a potential biomarker to identify ASD and provide new perspectives to detect cognitive changes in ASD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助陈st采纳,获得10
刚刚
LL发布了新的文献求助10
刚刚
刘星星完成签到 ,获得积分10
刚刚
酷炫的红牛完成签到,获得积分10
1秒前
1秒前
坚强的阳光菇完成签到 ,获得积分10
1秒前
czzlancer完成签到,获得积分10
3秒前
Leif完成签到,获得积分0
3秒前
酷酷三问完成签到 ,获得积分10
3秒前
激昂的如柏完成签到,获得积分10
3秒前
爆米花应助lawang采纳,获得10
4秒前
顾海东完成签到,获得积分10
4秒前
poker84完成签到,获得积分10
5秒前
zw完成签到 ,获得积分10
5秒前
orixero应助nyfz2002采纳,获得10
5秒前
金金完成签到 ,获得积分10
5秒前
wqwq69完成签到,获得积分10
6秒前
阔达采白完成签到,获得积分10
7秒前
herococa应助菠菜采纳,获得150
7秒前
Aikesi完成签到,获得积分10
7秒前
8秒前
畅快的半仙完成签到,获得积分20
9秒前
Zoey完成签到,获得积分10
9秒前
虞访云完成签到,获得积分10
9秒前
ccc完成签到,获得积分10
9秒前
尼古拉耶维奇完成签到,获得积分10
10秒前
小巴德完成签到,获得积分10
10秒前
Ljr123完成签到,获得积分10
10秒前
Ava应助choys采纳,获得10
11秒前
waynechang完成签到,获得积分10
13秒前
处处铃铛响完成签到,获得积分10
13秒前
凤迎雪飘完成签到,获得积分10
14秒前
陈st发布了新的文献求助10
14秒前
15秒前
啊呜一口甜完成签到,获得积分0
15秒前
15秒前
Gloyxtg发布了新的文献求助10
15秒前
faker完成签到,获得积分10
15秒前
zz应助yannna采纳,获得10
15秒前
春天的粥完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651622
求助须知:如何正确求助?哪些是违规求助? 4785400
关于积分的说明 15054736
捐赠科研通 4810228
什么是DOI,文献DOI怎么找? 2573047
邀请新用户注册赠送积分活动 1528941
关于科研通互助平台的介绍 1487934