Identification and analysis of autism spectrum disorder via large‐scale dynamic functional network connectivity

自闭症谱系障碍 动态功能连接 自闭症 认知 滑动窗口协议 心理学 模式识别(心理学) 神经科学 人工智能 计算机科学 功能连接 认知心理学 窗口(计算) 发展心理学 操作系统
作者
Wenwen Zhuang,Hai Jia,Yunhong Liu,Jing Cong,Kai Chen,Dezhong Yao,Xiaodong Kang,Peng Xu,Tao Zhang
出处
期刊:Autism Research [Wiley]
卷期号:16 (8): 1512-1526 被引量:14
标识
DOI:10.1002/aur.2974
摘要

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with severe cognitive impairment. Several studies have reported that brain functional network connectivity (FNC) has great potential for identifying ASD from healthy control (HC) and revealing the relationships between the brain and behaviors of ASD. However, few studies have explored dynamic large-scale FNC as a feature to identify individuals with ASD. This study used a time-sliding window method to study the dynamic FNC (dFNC) on the resting-state fMRI. To avoid arbitrarily determining the window length, we set a window length range of 10-75 TRs (TR = 2 s). We constructed linear support vector machine classifiers for all window length conditions. Using a nested 10-fold cross-validation framework, we obtained a grand average accuracy of 94.88% across window length conditions, which is higher than those reported in previous studies. In addition, we determined the optimal window length using the highest classification accuracy of 97.77%. Based on the optimal window length, we found that the dFNCs were located mainly in dorsal and ventral attention networks (DAN and VAN) and exhibited the highest weight in classification. Specifically, we found that the dFNC between DAN and temporal orbitofrontal network (TOFN) was significantly negatively correlated with social scores of ASD. Finally, using the dFNCs with high classification weights as features, we construct a model to predict the clinical score of ASD. Overall, our findings demonstrated that the dFNC could be a potential biomarker to identify ASD and provide new perspectives to detect cognitive changes in ASD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罚克由尔完成签到,获得积分0
1秒前
干净姝底物完成签到,获得积分10
2秒前
甜甜灵槐完成签到 ,获得积分10
2秒前
淡然宛凝完成签到 ,获得积分10
2秒前
青桔柠檬完成签到 ,获得积分10
3秒前
昀松完成签到,获得积分10
4秒前
pyrene完成签到 ,获得积分10
4秒前
嗯呢完成签到 ,获得积分10
5秒前
cassie完成签到,获得积分10
5秒前
骑猪看日落完成签到,获得积分10
6秒前
VDC应助务实蜗牛采纳,获得30
6秒前
汶溢完成签到,获得积分10
6秒前
拓跋傲薇完成签到,获得积分10
7秒前
怡然的海瑶完成签到,获得积分10
7秒前
W-水完成签到,获得积分10
8秒前
xxx1234完成签到,获得积分10
9秒前
科研蜗牛完成签到,获得积分10
9秒前
金桔希子完成签到,获得积分10
9秒前
和和和完成签到,获得积分10
10秒前
jidou1011发布了新的文献求助10
10秒前
奉雨眠完成签到,获得积分10
10秒前
海的声音完成签到,获得积分10
10秒前
11秒前
12秒前
terry完成签到,获得积分10
12秒前
任性的思远完成签到 ,获得积分10
12秒前
七年完成签到,获得积分10
12秒前
武海素完成签到,获得积分10
13秒前
分子遗传小菜鸟完成签到,获得积分10
13秒前
风中琦完成签到 ,获得积分10
13秒前
FooLeup立仔完成签到,获得积分10
13秒前
akion完成签到,获得积分10
13秒前
nlwsp完成签到 ,获得积分10
13秒前
从容傲柏完成签到,获得积分10
14秒前
周少完成签到,获得积分10
15秒前
海上森林的一只猫完成签到 ,获得积分10
15秒前
七年发布了新的文献求助10
15秒前
16秒前
lmy完成签到 ,获得积分10
17秒前
远山笑你完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401884
求助须知:如何正确求助?哪些是违规求助? 4520605
关于积分的说明 14080189
捐赠科研通 4434018
什么是DOI,文献DOI怎么找? 2434354
邀请新用户注册赠送积分活动 1426562
关于科研通互助平台的介绍 1405308