Multi-level games optimal scheduling strategy of multiple virtual power plants considering carbon emission flow and carbon trade

虚拟发电厂 可再生能源 计算机科学 需求响应 温室气体 工艺工程 环境经济学 模拟 工程类 分布式发电 电气工程 经济 生态学 生物
作者
Jun Pan,Xiaoou Liu,Jingyun Huang
出处
期刊:Electric Power Systems Research [Elsevier]
卷期号:223: 109669-109669 被引量:1
标识
DOI:10.1016/j.epsr.2023.109669
摘要

Under the goal of "carbon emissions peak, carbon neutrality", virtual power plant (VPP) is of great significance in improving grid safety level and promoting the clean and low carbon energy transition. However, there is a significant contradiction between the weather-dependent and intermittent output of renewable energy and the combined heat and power (CHP) unit working in the way of "with heat to determine electricity" in winter heating areas. It will seriously affect the peak-load regulating capacity of VPP, leading to high carbon emissions. With the gradual deepening of low-carbon energy transition and the continuous improvement of the carbon market, it provides a possible approach for solving the above problem. Therefore, this paper proposes a multi-level games optimal scheduling strategy of multiple virtual power plants considering carbon emission flow and carbon trade. The structure of VPP built in this paper adds carbon capture and storage (CCS), electrical energy storage device and electric boiler on the basis of CHP and renewable energy power generation, and considers the carbon-oriented demand response mechanism. The multiple VPPs architecture is established that can meet the demands of clean heating and energy supply. Then, the model of carbon emission flow (CEF) suitable for VPP structure in this paper is established. On the basis, a multi-level games optimal scheduling model is established. The Nash-bargaining model is used between multiple VPPs to simulate the gaming behavior of each VPP in the carbon trading market. Master-slave game is used within the VPP to guide the low carbon transformation in demand-side through the carbon-oriented price mechanism. Finally, adaptive alternating direction multiplier method (ADMM) combined with data-driven two-stage robust optimization is used to solve the model, in order to obtain the optimal trading volume of carbon quota and trading price. The parallel column and constraint generation (CCG) algorithm is used to increase the efficiency of model solution. The simulation results show that the algorithm of parallel CCG and adaptive ADMM has higher accuracy and shorter computing time. The proposed scheduling strategy can achieve flexible and low-carbon operation of VPP. Through coordination control between the source side and the demand-side, scheduling strategy can effectively help VPP improve the capacity of renewable energy utilization, reduce carbon emissions, the costs of VPP source side and demand-side.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SY发布了新的文献求助10
1秒前
可爱小哪吒完成签到,获得积分10
1秒前
斯文败类应助doudou采纳,获得10
2秒前
苹果完成签到,获得积分10
2秒前
2秒前
一颗咸蛋黄完成签到 ,获得积分20
4秒前
打打应助5477采纳,获得10
4秒前
灵巧坤发布了新的文献求助30
4秒前
4秒前
小猴完成签到,获得积分10
5秒前
Raymond应助NANA采纳,获得10
6秒前
Sean完成签到 ,获得积分10
6秒前
6秒前
无情山水发布了新的文献求助10
7秒前
锦纹完成签到,获得积分10
7秒前
南桥发布了新的文献求助10
7秒前
7秒前
伶俐的书白完成签到,获得积分10
8秒前
科研通AI5应助威武诺言采纳,获得10
8秒前
8秒前
LXL完成签到,获得积分10
8秒前
杳鸢应助三金采纳,获得20
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
英俊的铭应助yyj采纳,获得10
9秒前
SV发布了新的文献求助10
9秒前
10秒前
12发布了新的文献求助10
10秒前
JamesPei应助化学狗采纳,获得10
10秒前
胡图图发布了新的文献求助10
10秒前
11秒前
xm完成签到,获得积分10
12秒前
谦让的含海完成签到,获得积分10
12秒前
所所应助包容的剑采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762