Multi-level games optimal scheduling strategy of multiple virtual power plants considering carbon emission flow and carbon trade

虚拟发电厂 可再生能源 计算机科学 需求响应 温室气体 工艺工程 环境经济学 模拟 工程类 分布式发电 电气工程 经济 生态学 生物
作者
Jun Pan,Xiaoou Liu,Jingyun Huang
出处
期刊:Electric Power Systems Research [Elsevier]
卷期号:223: 109669-109669 被引量:1
标识
DOI:10.1016/j.epsr.2023.109669
摘要

Under the goal of "carbon emissions peak, carbon neutrality", virtual power plant (VPP) is of great significance in improving grid safety level and promoting the clean and low carbon energy transition. However, there is a significant contradiction between the weather-dependent and intermittent output of renewable energy and the combined heat and power (CHP) unit working in the way of "with heat to determine electricity" in winter heating areas. It will seriously affect the peak-load regulating capacity of VPP, leading to high carbon emissions. With the gradual deepening of low-carbon energy transition and the continuous improvement of the carbon market, it provides a possible approach for solving the above problem. Therefore, this paper proposes a multi-level games optimal scheduling strategy of multiple virtual power plants considering carbon emission flow and carbon trade. The structure of VPP built in this paper adds carbon capture and storage (CCS), electrical energy storage device and electric boiler on the basis of CHP and renewable energy power generation, and considers the carbon-oriented demand response mechanism. The multiple VPPs architecture is established that can meet the demands of clean heating and energy supply. Then, the model of carbon emission flow (CEF) suitable for VPP structure in this paper is established. On the basis, a multi-level games optimal scheduling model is established. The Nash-bargaining model is used between multiple VPPs to simulate the gaming behavior of each VPP in the carbon trading market. Master-slave game is used within the VPP to guide the low carbon transformation in demand-side through the carbon-oriented price mechanism. Finally, adaptive alternating direction multiplier method (ADMM) combined with data-driven two-stage robust optimization is used to solve the model, in order to obtain the optimal trading volume of carbon quota and trading price. The parallel column and constraint generation (CCG) algorithm is used to increase the efficiency of model solution. The simulation results show that the algorithm of parallel CCG and adaptive ADMM has higher accuracy and shorter computing time. The proposed scheduling strategy can achieve flexible and low-carbon operation of VPP. Through coordination control between the source side and the demand-side, scheduling strategy can effectively help VPP improve the capacity of renewable energy utilization, reduce carbon emissions, the costs of VPP source side and demand-side.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不配.应助鸢尾采纳,获得20
1秒前
积极墨镜完成签到,获得积分10
2秒前
八九发布了新的文献求助10
4秒前
dxy完成签到 ,获得积分10
4秒前
4秒前
可爱完成签到 ,获得积分10
5秒前
miemiede完成签到,获得积分10
7秒前
顺利富发布了新的文献求助10
7秒前
henry发布了新的文献求助10
7秒前
8秒前
8秒前
Stephen完成签到,获得积分10
8秒前
10秒前
深情安青应助wmk采纳,获得10
10秒前
miemiede发布了新的文献求助10
11秒前
bbpp发布了新的文献求助10
11秒前
13秒前
13秒前
欢喜怀绿发布了新的文献求助10
13秒前
李爱国应助机智向松采纳,获得10
14秒前
张利双发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
17秒前
18秒前
张利双发布了新的文献求助30
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
斯文百招发布了新的文献求助10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
称心的如柏完成签到,获得积分10
19秒前
lucky发布了新的文献求助10
20秒前
丘比特应助美好斓采纳,获得10
20秒前
henry完成签到,获得积分10
21秒前
summer夏发布了新的文献求助10
22秒前
八九完成签到,获得积分10
23秒前
顺利富完成签到,获得积分20
24秒前
24秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218048
求助须知:如何正确求助?哪些是违规求助? 2867304
关于积分的说明 8155707
捐赠科研通 2534228
什么是DOI,文献DOI怎么找? 1366805
科研通“疑难数据库(出版商)”最低求助积分说明 644866
邀请新用户注册赠送积分活动 617911