Pharmacodynamics and pharmacological mechanism of Moluodan concentrated pill in the treatment of atrophic gastritis: A network pharmacological study and in vivo experiments

系统药理学 中医药 小桶 机制(生物学) 医学 药理学 药效学 体内 临床药理学 UniProt公司 作用机理 计算生物学 数据库 生物信息学 基因 生物 药品 基因本体论 药代动力学 基因表达 计算机科学 遗传学 替代医学 体外 病理 哲学 认识论
作者
Ni Lou,Mengyin Zhai,Zeqi Su,Fuhao Chu,Yuan Li,Runsheng Chen,Mengting Liao,Ping Li,Rongqiang Bo,Xiangmei Meng,Ping Zhang,Xia Ding
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:318: 116937-116937 被引量:10
标识
DOI:10.1016/j.jep.2023.116937
摘要

Moluodan concentrated pill (MLD) is a traditional herbal formula used in China for the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism of action remains unclear.The aim of this study was to investigate the therapeutic effect and mechanism of action of MLD in the treatment of CAG using network pharmacology and in vivo experiments.The active compounds of MLD were determined using network pharmacology, utilizing various Chinese medicine databases such as the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Traditional Chinese Medicine Integrated Database, Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine, and a comprehensive database of Traditional Chinese Medicine on Immuno-Oncology. The compounds found in the root of Anemone altaica Fisch. were extracted from the China National Knowledge Infrastructure literature database. Additionally, the Swiss Target Prediction database and Similarity Ensemble Approach were employed to identify the potential targets of these components. CAG-related targets were gathered from the GeneCards and DisGeNET databases. Protein-protein interactions (PPIs) of the genes associated with the drug-disease crossover were examined, and a core PPI network was constructed using the STRING database (version 11.5) and Cytoscape (version 3.7.2). A gene-pathway network was established to identify significant target genes and pathways through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, based on these findings and existing data, the tumor necrosis factor (TNF) signaling pathway was selected for further validation through in vivo experiments.A total of 724 active molecules in MLD yielded 961 identified target genes, of which 179 were found to be potentially associated with CAG. From the common targets, a PPI network revealed ten core targets. Enrichment analysis suggested that MLD may primarily target TNF and AKT in the treatment of CAG. Essential signaling pathways, such as the PI3K-AKT and TNF pathways, were found to be crucial for the therapeutic effects of MLD on CAG. Furthermore, potential interactions and crosstalk between these pathways were identified. Moreover, we confirmed that MLD effectively improved gastric mucosa atrophy and cellular ultrastructural damage, while increasing pepsinogen secretion and decreasing gastrin, somatostatin, and motilin levels. Subsequent molecular biology studies in rat models of CAG demonstrated that MLD treatment significantly reduced the expression levels of TNF-α, phosphatidylinositol 3'-kinase (PI3K), and phosphorylated Akt (P < 0.05). Notably, the expression of nuclear factor kappa-B (NF-κB) exhibited a contrasting trend (P < 0.05), potentially associated with the crucial tumor suppressor role of NF-κB p105.This study provides evidence that MLD effectively alleviates stomach mucosal atrophy through modulation of the TNF/PI3K/AKT signaling pathway. These findings establish a solid theoretical foundation for the practical management of CAG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
huh完成签到,获得积分10
2秒前
希望天下0贩的0应助hua采纳,获得10
2秒前
枫asaki发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
甜美的成败完成签到,获得积分10
3秒前
嘟嘟发布了新的文献求助10
3秒前
CGDAZE完成签到,获得积分10
4秒前
OrtonF7发布了新的文献求助10
4秒前
果果发布了新的文献求助60
4秒前
cun发布了新的文献求助10
4秒前
dddyrrrrr完成签到 ,获得积分10
4秒前
5秒前
5秒前
huh发布了新的文献求助10
6秒前
斯文败类应助感动安露采纳,获得10
6秒前
大秦帝国发布了新的文献求助10
6秒前
亚尔发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
酷波er应助枫asaki采纳,获得10
9秒前
刘亦菲暧昧对象完成签到 ,获得积分10
9秒前
我是老大应助亚尔采纳,获得10
9秒前
yang完成签到,获得积分10
9秒前
9秒前
Ava应助cyf采纳,获得10
10秒前
tiptip应助科研通管家采纳,获得10
11秒前
酸汤肥牛完成签到,获得积分10
11秒前
果果发布了新的文献求助10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
smottom应助科研通管家采纳,获得10
11秒前
Criminology34应助emma采纳,获得10
11秒前
Singularity应助科研通管家采纳,获得10
11秒前
fccc1412完成签到,获得积分20
11秒前
小丁1127应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423