Prognosis Prediction of Disulfidptosis-Related Genes in Bladder Cancer and a Comprehensive Analysis of Immunotherapy

列线图 膀胱癌 医学 免疫疗法 肿瘤科 比例危险模型 机制(生物学) 内科学 癌症 生物信息学 生物 哲学 认识论
作者
Chonghao Jiang,Yonggui Xiao,Danping Xu,Youlong Huili,Shiwen Nie,Hubo Li,Xiaohai Guan,Fenghong Cao
出处
期刊:Critical Reviews in Eukaryotic Gene Expression [Begell House Inc.]
卷期号:33 (6): 73-86 被引量:3
标识
DOI:10.1615/critreveukaryotgeneexpr.2023048536
摘要

As a newly discovered mechanism of cell death, disulfidptosis is expected to help diagnose and treat bladder cancer patients. First, data obtained from public databases were analyzed using bioinformatics techniques. SVA packages were used to combine data from different databases to remove batch effects. Then, the differential analysis and COX regression analysis of ten disulfidptosis-related genes identified four prognostically relevant differentially expressed genes which were subjected to Lasso regression for further screening to obtain model-related genes and output model formulas. The predictive power of the prognostic model was verified and the immunohistochemistry of model-related genes was verified in the HPA database. Pathway enrichment analysis was performed to identify the mechanism of bladder cancer development and progression. The tumor microenvironment and immune cell infiltration of bladder cancer patients with different risk scores were analyzed to personalize treatment. Then, information from the IMvigor210 database was used to predict the responsiveness of different risk patients to immunotherapy. The oncoPredict package was used to predict the sensitivity of patients at different risk to chemotherapy drugs, and its results have some reference value for guiding clinical use. After confirming that our model could reliably predict the prognosis of bladder cancer patients, the risk scores were combined with clinical information to create a nomogram to accurately calculate the patient survival rate. A prognostic model containing three disulfidptosis-related genes (NDUFA11, RPN1, SLC3A2) was constructed. The functional enrichment analysis and immune-related analysis indicated patients in the high-risk group were candidates for immunotherapy. The results of drug susceptibility analysis can guide more accurate treatment for bladder cancer patients and the nomogram can accurately predict patient survival. NDUFA11, RPN1, and SLC3A2 are potential novel biomarkers for the diagnosis and treatment of bladder cancer. The comprehensive analysis of tumor immune profiles indicated that patients in the high-risk group are expected to benefit from immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蛋妞儿完成签到,获得积分10
1秒前
kannar完成签到,获得积分10
1秒前
Accepted完成签到,获得积分10
2秒前
wyuanhu完成签到,获得积分10
4秒前
5秒前
潇湘夜雨完成签到 ,获得积分10
5秒前
hwezhu发布了新的文献求助10
7秒前
9秒前
小福发布了新的文献求助10
10秒前
vic完成签到,获得积分10
10秒前
欢呼阁完成签到,获得积分10
10秒前
13秒前
13秒前
彩色的恋风完成签到,获得积分10
13秒前
千幻完成签到,获得积分10
14秒前
十三州府发布了新的文献求助10
18秒前
感动的听荷完成签到,获得积分10
20秒前
俊俊完成签到 ,获得积分0
23秒前
26秒前
开开心心的开心完成签到,获得积分10
27秒前
研究完成签到,获得积分10
27秒前
小福完成签到 ,获得积分20
28秒前
无花果应助淡然扬采纳,获得10
31秒前
helpme完成签到,获得积分10
32秒前
zzz完成签到,获得积分10
37秒前
39秒前
深山何处钟声鸣完成签到 ,获得积分10
41秒前
42秒前
Somnus完成签到 ,获得积分10
43秒前
穆一手完成签到 ,获得积分10
43秒前
聪明宛完成签到 ,获得积分10
43秒前
Clover04应助科研通管家采纳,获得10
43秒前
wanci应助科研通管家采纳,获得10
44秒前
SciGPT应助科研通管家采纳,获得10
44秒前
所所应助科研通管家采纳,获得10
44秒前
stuffmatter应助科研通管家采纳,获得10
44秒前
stuffmatter应助科研通管家采纳,获得10
44秒前
stuffmatter应助科研通管家采纳,获得10
44秒前
共享精神应助科研通管家采纳,获得10
44秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139810
求助须知:如何正确求助?哪些是违规求助? 2790680
关于积分的说明 7796114
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601176