Unsupervised pre-training of graph transformers on patient population graphs

计算机科学 机器学习 人工智能 训练集 标记数据 人口 变压器 无监督学习 图形 数据挖掘 理论计算机科学 量子力学 物理 社会学 人口学 电压
作者
Chantal Pellegrini,Nassir Navab,Anees Kazi
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:89: 102895-102895
标识
DOI:10.1016/j.media.2023.102895
摘要

Pre-training has shown success in different areas of machine learning, such as Computer Vision, Natural Language Processing (NLP), and medical imaging. However, it has not been fully explored for clinical data analysis. An immense amount of clinical records are recorded, but still, data and labels can be scarce for data collected in small hospitals or dealing with rare diseases. In such scenarios, pre-training on a larger set of unlabeled clinical data could improve performance. In this paper, we propose novel unsupervised pre-training techniques designed for heterogeneous, multi-modal clinical data for patient outcome prediction inspired by masked language modeling (MLM), by leveraging graph deep learning over population graphs. To this end, we further propose a graph-transformer-based network, designed to handle heterogeneous clinical data. By combining masking-based pre-training with a transformer-based network, we translate the success of masking-based pre-training in other domains to heterogeneous clinical data. We show the benefit of our pre-training method in a self-supervised and a transfer learning setting, utilizing three medical datasets TADPOLE, MIMIC-III, and a Sepsis Prediction Dataset. We find that our proposed pre-training methods help in modeling the data at a patient and population level and improve performance in different fine-tuning tasks on all datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
杳鸢应助彳亍1117采纳,获得10
1秒前
qunna完成签到,获得积分10
1秒前
1秒前
羊羊羊完成签到,获得积分10
2秒前
wanci应助shuang采纳,获得10
2秒前
Hello应助嗄巧采纳,获得10
3秒前
tong完成签到,获得积分10
3秒前
3秒前
plant发布了新的文献求助10
3秒前
Wananan发布了新的文献求助10
4秒前
虚幻的安白完成签到,获得积分10
4秒前
诚心谷南发布了新的文献求助10
4秒前
忐忑的蓝发布了新的文献求助10
4秒前
清爽幻竹发布了新的文献求助10
4秒前
5秒前
乐乐应助天博采纳,获得10
6秒前
lightman发布了新的文献求助10
6秒前
riotzoov发布了新的文献求助30
6秒前
zy3637完成签到,获得积分10
6秒前
搜集达人应助nlm采纳,获得10
6秒前
姜老师完成签到,获得积分10
6秒前
wzz完成签到,获得积分10
7秒前
草莓奶冻完成签到,获得积分10
7秒前
852应助大能猫采纳,获得10
8秒前
煜琪发布了新的文献求助10
8秒前
Gin完成签到,获得积分20
9秒前
9秒前
10秒前
lysixsixsix发布了新的文献求助10
10秒前
12秒前
Lucas应助hhh采纳,获得10
12秒前
riotzoov完成签到,获得积分10
12秒前
kai完成签到,获得积分10
12秒前
13秒前
菲噗噗发布了新的文献求助10
13秒前
久旱逢甘霖完成签到 ,获得积分10
14秒前
14秒前
Zz完成签到 ,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110