Pancreatic neuroendocrine tumor: prediction of tumor grades by radiomics models based on ultrasound images

医学 接收机工作特性 队列 神经内分泌肿瘤 放射科 无线电技术 金标准(测试) 回顾性队列研究 超声波 曲线下面积 内科学
作者
Yi Dong,Dongjie Yang,Xiao-Fan Tian,Wenhui Lou,Hanzhang Wang,Sheng Chen,Yi-Jie Qiu,Wenping Wang,Christoph F. Dietrich
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1149) 被引量:3
标识
DOI:10.1259/bjr.20220783
摘要

We aimed to investigate whether the radiomics analysis based on B-mode ultrasound (BMUS) images could predict histopathological tumor grades in pancreatic neuroendocrine tumors (pNETs).A total of 64 patients with surgery and histopathologically confirmed pNETs were retrospectively included (34 male and 30 female, mean age 52.4 ± 12.2 years). Patients were divided into training cohort (n = 44) and validation cohort (n = 20). All pNETs were classified into Grade 1 (G1), Grade 2 (G2), and Grade 3 (G3) tumors based on the Ki-67 proliferation index and the mitotic activity according to WHO 2017 criteria. Maximum relevance minimum redundancy, least absolute shrinkage and selection operator were used for feature selection. Receiver operating characteristic curve analysis was used to evaluate the model performance.Finally, 18 G1 pNETs, 35 G2 pNETs, and 11 G3 pNETs patients were included. The radiomic score derived from BMUS images to predict G2/G3 from G1 displayed a good performance with an area under the receiver operating characteristic curve of 0.844 in the training cohort, and 0.833 in the testing cohort. The radiomic score achieved an accuracy of 81.8% in the training cohort and 80.0% in the testing cohort, a sensitivity of 0.750 and 0.786, a specificity of 0.833 and 0.833 in the training/testing cohorts. Clinical benefit of the score also exhibited superior usefulness of the radiomic score, as shown by the decision curve analysis.Radiomic data constructed from BMUS images have the potential for predicting histopathological tumor grades in patients with pNETs.The radiomic model constructed from BMUS images has the potential for predicting histopathological tumor grades and Ki-67 proliferation indexes in patients with pNETs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
starwan完成签到 ,获得积分10
刚刚
舒适小笼包完成签到,获得积分10
1秒前
长风完成签到 ,获得积分10
1秒前
Skyline完成签到 ,获得积分10
1秒前
幽默的泥猴桃完成签到,获得积分10
2秒前
小爽完成签到,获得积分0
2秒前
巴拉巴拉完成签到,获得积分10
2秒前
lalaland完成签到,获得积分10
3秒前
陈肖楠完成签到,获得积分10
3秒前
HUYAOWEI发布了新的文献求助20
3秒前
3秒前
花花公子完成签到,获得积分10
4秒前
xinjiasuki完成签到 ,获得积分10
4秒前
4秒前
3237924531完成签到,获得积分10
5秒前
Xiaoyan完成签到,获得积分10
5秒前
科研人完成签到,获得积分10
5秒前
5秒前
5秒前
124cndhaP完成签到,获得积分10
6秒前
Accpted河豚完成签到,获得积分10
6秒前
NexusExplorer应助专注钢笔采纳,获得10
6秒前
东山完成签到,获得积分10
7秒前
AY完成签到 ,获得积分10
7秒前
de完成签到,获得积分10
7秒前
zyfzyf完成签到,获得积分10
7秒前
求助人员发布了新的文献求助80
7秒前
Amazing完成签到 ,获得积分10
8秒前
香蕉以菱完成签到,获得积分10
8秒前
兔兔酱发布了新的文献求助10
10秒前
再美完成签到,获得积分10
10秒前
stride21完成签到,获得积分10
10秒前
10秒前
de发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
华仔应助天行马采纳,获得10
12秒前
太叔文博完成签到,获得积分10
12秒前
小明完成签到,获得积分10
12秒前
清秀凡霜完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584934
求助须知:如何正确求助?哪些是违规求助? 4668775
关于积分的说明 14772496
捐赠科研通 4616501
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467626