医学
接收机工作特性
队列
神经内分泌肿瘤
放射科
无线电技术
金标准(测试)
回顾性队列研究
超声波
曲线下面积
内科学
作者
Yi Dong,Dongjie Yang,Xiao-Fan Tian,Wenhui Lou,Hanzhang Wang,Sheng Chen,Yi-Jie Qiu,Wenping Wang,Christoph F. Dietrich
出处
期刊:British Journal of Radiology
[British Institute of Radiology]
日期:2023-09-01
卷期号:96 (1149)
被引量:3
摘要
We aimed to investigate whether the radiomics analysis based on B-mode ultrasound (BMUS) images could predict histopathological tumor grades in pancreatic neuroendocrine tumors (pNETs).A total of 64 patients with surgery and histopathologically confirmed pNETs were retrospectively included (34 male and 30 female, mean age 52.4 ± 12.2 years). Patients were divided into training cohort (n = 44) and validation cohort (n = 20). All pNETs were classified into Grade 1 (G1), Grade 2 (G2), and Grade 3 (G3) tumors based on the Ki-67 proliferation index and the mitotic activity according to WHO 2017 criteria. Maximum relevance minimum redundancy, least absolute shrinkage and selection operator were used for feature selection. Receiver operating characteristic curve analysis was used to evaluate the model performance.Finally, 18 G1 pNETs, 35 G2 pNETs, and 11 G3 pNETs patients were included. The radiomic score derived from BMUS images to predict G2/G3 from G1 displayed a good performance with an area under the receiver operating characteristic curve of 0.844 in the training cohort, and 0.833 in the testing cohort. The radiomic score achieved an accuracy of 81.8% in the training cohort and 80.0% in the testing cohort, a sensitivity of 0.750 and 0.786, a specificity of 0.833 and 0.833 in the training/testing cohorts. Clinical benefit of the score also exhibited superior usefulness of the radiomic score, as shown by the decision curve analysis.Radiomic data constructed from BMUS images have the potential for predicting histopathological tumor grades in patients with pNETs.The radiomic model constructed from BMUS images has the potential for predicting histopathological tumor grades and Ki-67 proliferation indexes in patients with pNETs.
科研通智能强力驱动
Strongly Powered by AbleSci AI