Pancreatic neuroendocrine tumor: prediction of tumor grades by radiomics models based on ultrasound images

医学 接收机工作特性 队列 神经内分泌肿瘤 放射科 无线电技术 金标准(测试) 回顾性队列研究 超声波 曲线下面积 内科学
作者
Yi Dong,Dongjie Yang,Xiao-Fan Tian,Wenhui Lou,Hanzhang Wang,Sheng Chen,Yi-Jie Qiu,Wenping Wang,Christoph F. Dietrich
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1149) 被引量:3
标识
DOI:10.1259/bjr.20220783
摘要

We aimed to investigate whether the radiomics analysis based on B-mode ultrasound (BMUS) images could predict histopathological tumor grades in pancreatic neuroendocrine tumors (pNETs).A total of 64 patients with surgery and histopathologically confirmed pNETs were retrospectively included (34 male and 30 female, mean age 52.4 ± 12.2 years). Patients were divided into training cohort (n = 44) and validation cohort (n = 20). All pNETs were classified into Grade 1 (G1), Grade 2 (G2), and Grade 3 (G3) tumors based on the Ki-67 proliferation index and the mitotic activity according to WHO 2017 criteria. Maximum relevance minimum redundancy, least absolute shrinkage and selection operator were used for feature selection. Receiver operating characteristic curve analysis was used to evaluate the model performance.Finally, 18 G1 pNETs, 35 G2 pNETs, and 11 G3 pNETs patients were included. The radiomic score derived from BMUS images to predict G2/G3 from G1 displayed a good performance with an area under the receiver operating characteristic curve of 0.844 in the training cohort, and 0.833 in the testing cohort. The radiomic score achieved an accuracy of 81.8% in the training cohort and 80.0% in the testing cohort, a sensitivity of 0.750 and 0.786, a specificity of 0.833 and 0.833 in the training/testing cohorts. Clinical benefit of the score also exhibited superior usefulness of the radiomic score, as shown by the decision curve analysis.Radiomic data constructed from BMUS images have the potential for predicting histopathological tumor grades in patients with pNETs.The radiomic model constructed from BMUS images has the potential for predicting histopathological tumor grades and Ki-67 proliferation indexes in patients with pNETs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ehgnix完成签到,获得积分10
1秒前
decademe完成签到,获得积分10
1秒前
1秒前
朱朱珠珠应助HJJHJH采纳,获得10
1秒前
科研通AI6应助Aiden采纳,获得30
2秒前
2秒前
春风完成签到,获得积分10
2秒前
yiyiyi完成签到 ,获得积分10
3秒前
Mila发布了新的文献求助10
4秒前
星辰大海应助velen采纳,获得10
4秒前
是多少发布了新的文献求助10
5秒前
5秒前
春风发布了新的文献求助10
6秒前
乐乐应助诸葛十八子采纳,获得10
6秒前
7秒前
8秒前
炙热笑白发布了新的文献求助10
8秒前
zgaolei完成签到,获得积分10
10秒前
panpan发布了新的文献求助10
10秒前
123完成签到,获得积分10
10秒前
10秒前
蓝天给任性的思远的求助进行了留言
11秒前
云阿柔完成签到,获得积分10
12秒前
我是老大应助shelly采纳,获得10
12秒前
是多少完成签到,获得积分10
12秒前
JjlvU22发布了新的文献求助10
13秒前
la完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
sweet完成签到 ,获得积分10
16秒前
17秒前
18秒前
johnhush完成签到,获得积分10
21秒前
22秒前
苗浩阳完成签到,获得积分10
23秒前
吴亚博发布了新的文献求助10
23秒前
23秒前
25秒前
默默的半梅完成签到,获得积分10
28秒前
28秒前
SciGPT应助王富贵采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571758
求助须知:如何正确求助?哪些是违规求助? 4656925
关于积分的说明 14718453
捐赠科研通 4597827
什么是DOI,文献DOI怎么找? 2523359
邀请新用户注册赠送积分活动 1494204
关于科研通互助平台的介绍 1464312