Pancreatic neuroendocrine tumor: prediction of tumor grades by radiomics models based on ultrasound images

医学 接收机工作特性 队列 神经内分泌肿瘤 放射科 无线电技术 金标准(测试) 回顾性队列研究 超声波 曲线下面积 内科学
作者
Yi Dong,Dongjie Yang,Xiao-Fan Tian,Wenhui Lou,Hanzhang Wang,Sheng Chen,Yi-Jie Qiu,Wenping Wang,Christoph F. Dietrich
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1149) 被引量:3
标识
DOI:10.1259/bjr.20220783
摘要

We aimed to investigate whether the radiomics analysis based on B-mode ultrasound (BMUS) images could predict histopathological tumor grades in pancreatic neuroendocrine tumors (pNETs).A total of 64 patients with surgery and histopathologically confirmed pNETs were retrospectively included (34 male and 30 female, mean age 52.4 ± 12.2 years). Patients were divided into training cohort (n = 44) and validation cohort (n = 20). All pNETs were classified into Grade 1 (G1), Grade 2 (G2), and Grade 3 (G3) tumors based on the Ki-67 proliferation index and the mitotic activity according to WHO 2017 criteria. Maximum relevance minimum redundancy, least absolute shrinkage and selection operator were used for feature selection. Receiver operating characteristic curve analysis was used to evaluate the model performance.Finally, 18 G1 pNETs, 35 G2 pNETs, and 11 G3 pNETs patients were included. The radiomic score derived from BMUS images to predict G2/G3 from G1 displayed a good performance with an area under the receiver operating characteristic curve of 0.844 in the training cohort, and 0.833 in the testing cohort. The radiomic score achieved an accuracy of 81.8% in the training cohort and 80.0% in the testing cohort, a sensitivity of 0.750 and 0.786, a specificity of 0.833 and 0.833 in the training/testing cohorts. Clinical benefit of the score also exhibited superior usefulness of the radiomic score, as shown by the decision curve analysis.Radiomic data constructed from BMUS images have the potential for predicting histopathological tumor grades in patients with pNETs.The radiomic model constructed from BMUS images has the potential for predicting histopathological tumor grades and Ki-67 proliferation indexes in patients with pNETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助气泡酸梅汁采纳,获得10
1秒前
qwe发布了新的文献求助10
1秒前
2秒前
2秒前
小马甲应助Echo采纳,获得10
2秒前
许熙完成签到,获得积分10
3秒前
3秒前
嗷呜嗷呜发布了新的文献求助10
3秒前
3秒前
Migue应助糖炒栗子采纳,获得10
4秒前
大民王完成签到,获得积分10
4秒前
WYJ发布了新的文献求助10
5秒前
5秒前
王小蔓完成签到,获得积分10
5秒前
6秒前
6秒前
俊秀的秋柔完成签到,获得积分10
6秒前
独特的易形完成签到,获得积分10
6秒前
3237924531完成签到,获得积分10
7秒前
7秒前
7秒前
wzlcarrot发布了新的文献求助10
7秒前
esther完成签到,获得积分10
7秒前
7秒前
小羊苏西完成签到,获得积分10
8秒前
hahahah发布了新的文献求助10
8秒前
亚婷儿完成签到,获得积分10
8秒前
8秒前
学霸土豆发布了新的文献求助10
8秒前
9秒前
IBMffff应助嘎玛采纳,获得10
10秒前
Jiang完成签到,获得积分10
10秒前
10秒前
传奇3应助zhou采纳,获得10
10秒前
11秒前
snsut发布了新的文献求助10
11秒前
12秒前
13秒前
IAMXC发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143353
求助须知:如何正确求助?哪些是违规求助? 2794636
关于积分的说明 7811842
捐赠科研通 2450801
什么是DOI,文献DOI怎么找? 1304061
科研通“疑难数据库(出版商)”最低求助积分说明 627178
版权声明 601386