Pancreatic neuroendocrine tumor: prediction of tumor grades by radiomics models based on ultrasound images

医学 接收机工作特性 队列 神经内分泌肿瘤 放射科 无线电技术 金标准(测试) 回顾性队列研究 超声波 曲线下面积 内科学
作者
Yi Dong,Dongjie Yang,Xiao-Fan Tian,Wenhui Lou,Hanzhang Wang,Sheng Chen,Yi-Jie Qiu,Wenping Wang,Christoph F. Dietrich
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1149) 被引量:3
标识
DOI:10.1259/bjr.20220783
摘要

We aimed to investigate whether the radiomics analysis based on B-mode ultrasound (BMUS) images could predict histopathological tumor grades in pancreatic neuroendocrine tumors (pNETs).A total of 64 patients with surgery and histopathologically confirmed pNETs were retrospectively included (34 male and 30 female, mean age 52.4 ± 12.2 years). Patients were divided into training cohort (n = 44) and validation cohort (n = 20). All pNETs were classified into Grade 1 (G1), Grade 2 (G2), and Grade 3 (G3) tumors based on the Ki-67 proliferation index and the mitotic activity according to WHO 2017 criteria. Maximum relevance minimum redundancy, least absolute shrinkage and selection operator were used for feature selection. Receiver operating characteristic curve analysis was used to evaluate the model performance.Finally, 18 G1 pNETs, 35 G2 pNETs, and 11 G3 pNETs patients were included. The radiomic score derived from BMUS images to predict G2/G3 from G1 displayed a good performance with an area under the receiver operating characteristic curve of 0.844 in the training cohort, and 0.833 in the testing cohort. The radiomic score achieved an accuracy of 81.8% in the training cohort and 80.0% in the testing cohort, a sensitivity of 0.750 and 0.786, a specificity of 0.833 and 0.833 in the training/testing cohorts. Clinical benefit of the score also exhibited superior usefulness of the radiomic score, as shown by the decision curve analysis.Radiomic data constructed from BMUS images have the potential for predicting histopathological tumor grades in patients with pNETs.The radiomic model constructed from BMUS images has the potential for predicting histopathological tumor grades and Ki-67 proliferation indexes in patients with pNETs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助doctorw采纳,获得10
1秒前
1秒前
Chen完成签到,获得积分10
2秒前
2秒前
基2发布了新的文献求助10
2秒前
科研通AI6应助学术小白two采纳,获得10
3秒前
lhy123完成签到,获得积分10
3秒前
ha完成签到 ,获得积分10
3秒前
王十七完成签到,获得积分10
4秒前
Ava应助tristaxlr采纳,获得10
4秒前
5秒前
wang_qi发布了新的文献求助10
6秒前
7秒前
FashionBoy应助mof采纳,获得10
7秒前
南川完成签到,获得积分10
7秒前
8秒前
panmin完成签到,获得积分10
9秒前
9秒前
大力帽子应助yao采纳,获得10
10秒前
俊逸飞雪完成签到,获得积分10
10秒前
diony010发布了新的文献求助10
10秒前
11秒前
13秒前
冰凌心恋发布了新的文献求助20
13秒前
段凯嘉发布了新的文献求助10
13秒前
大力帽子应助烽火残心采纳,获得10
14秒前
顺利萃完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
14秒前
称心的星月应助王恒采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
SciGPT应助称心储采纳,获得10
15秒前
猪猪hero发布了新的文献求助10
15秒前
无情夏槐完成签到,获得积分10
16秒前
mof完成签到,获得积分10
16秒前
17秒前
刻苦秋尽发布了新的文献求助10
18秒前
许许发布了新的文献求助10
19秒前
19秒前
19秒前
mengdewen完成签到,获得积分10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694202
求助须知:如何正确求助?哪些是违规求助? 5096252
关于积分的说明 15213274
捐赠科研通 4850853
什么是DOI,文献DOI怎么找? 2602038
邀请新用户注册赠送积分活动 1553878
关于科研通互助平台的介绍 1511814