亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pancreatic neuroendocrine tumor: prediction of tumor grades by radiomics models based on ultrasound images

医学 接收机工作特性 队列 神经内分泌肿瘤 放射科 无线电技术 金标准(测试) 回顾性队列研究 超声波 曲线下面积 内科学
作者
Yi Dong,Dongjie Yang,Xiao-Fan Tian,Wenhui Lou,Hanzhang Wang,Sheng Chen,Yi-Jie Qiu,Wenping Wang,Christoph F. Dietrich
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1149) 被引量:3
标识
DOI:10.1259/bjr.20220783
摘要

We aimed to investigate whether the radiomics analysis based on B-mode ultrasound (BMUS) images could predict histopathological tumor grades in pancreatic neuroendocrine tumors (pNETs).A total of 64 patients with surgery and histopathologically confirmed pNETs were retrospectively included (34 male and 30 female, mean age 52.4 ± 12.2 years). Patients were divided into training cohort (n = 44) and validation cohort (n = 20). All pNETs were classified into Grade 1 (G1), Grade 2 (G2), and Grade 3 (G3) tumors based on the Ki-67 proliferation index and the mitotic activity according to WHO 2017 criteria. Maximum relevance minimum redundancy, least absolute shrinkage and selection operator were used for feature selection. Receiver operating characteristic curve analysis was used to evaluate the model performance.Finally, 18 G1 pNETs, 35 G2 pNETs, and 11 G3 pNETs patients were included. The radiomic score derived from BMUS images to predict G2/G3 from G1 displayed a good performance with an area under the receiver operating characteristic curve of 0.844 in the training cohort, and 0.833 in the testing cohort. The radiomic score achieved an accuracy of 81.8% in the training cohort and 80.0% in the testing cohort, a sensitivity of 0.750 and 0.786, a specificity of 0.833 and 0.833 in the training/testing cohorts. Clinical benefit of the score also exhibited superior usefulness of the radiomic score, as shown by the decision curve analysis.Radiomic data constructed from BMUS images have the potential for predicting histopathological tumor grades in patients with pNETs.The radiomic model constructed from BMUS images has the potential for predicting histopathological tumor grades and Ki-67 proliferation indexes in patients with pNETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
2秒前
bkagyin应助可乐采纳,获得10
11秒前
健忘的自行车完成签到,获得积分20
11秒前
12秒前
Able完成签到,获得积分10
13秒前
阿花阿花发布了新的文献求助10
18秒前
小白完成签到 ,获得积分10
19秒前
25秒前
33秒前
34秒前
34秒前
lllyq完成签到,获得积分10
34秒前
tuanheqi发布了新的文献求助20
36秒前
一独白发布了新的文献求助10
37秒前
Orange应助李春鸿采纳,获得10
37秒前
一只呆呆发布了新的文献求助10
48秒前
57秒前
1分钟前
1分钟前
科研通AI6应助清脆的人生采纳,获得10
1分钟前
卓念梦发布了新的文献求助10
1分钟前
LLL完成签到,获得积分10
1分钟前
nic完成签到,获得积分10
1分钟前
1分钟前
Frank应助一独白采纳,获得10
1分钟前
一只呆呆发布了新的文献求助10
1分钟前
1分钟前
1分钟前
可乐发布了新的文献求助10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454784
求助须知:如何正确求助?哪些是违规求助? 4562164
关于积分的说明 14284810
捐赠科研通 4485976
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447790
关于科研通互助平台的介绍 1422988