已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classifying and Scoring Major Depressive Disorders by Residual Neural Networks on Specific Frequencies and Brain Regions

脑电图 均方误差 人工智能 残余物 萧条(经济学) 重性抑郁障碍 模式识别(心理学) 频带 计算机科学 F1得分 人工神经网络 大脑活动与冥想 认知 心理学 机器学习 统计 数学 精神科 算法 计算机网络 带宽(计算) 经济 宏观经济学
作者
Kang Cheng,Daniel Novák,Xujing Yao,Jiayong Xie,Yong Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 2964-2973 被引量:4
标识
DOI:10.1109/tnsre.2023.3293051
摘要

Major Depressive Disorder (MDD) -can be evaluated by advanced neurocomputing and traditional machine learning techniques.This study aims to develop an automatic system based on a Brain-Computer Interface (BCI) to classify and score depressive patients by specific frequency bands and electrodes.In this study, two Residual Neural Networks (ResNets) based on electroencephalogram (EEG) monitoring are presented for classifying depression (classifier) and for scoring depressive severity (regression).Significant frequency bands and specific brain regions are selected to improve the performance of the ResNets.The algorithm, which is estimated by 10-fold crossvalidation, attained an average accuracy rate ranging from 0.371 to 0.571 and achieved average Root-Mean-Square Error (RMSE) from 7.25 to 8.41.After using the beta frequency band and 16 specific EEG channels, we obtained the best-classifying accuracy at 0.871 and the smallest RMSE at 2.80.It was discovered that signals extracted from the beta band are more distinctive in depression classification, and these selected channels tend to perform better on scoring depressive severity.Our study also uncovered the different brain architectural connections by relying on phase coherence analysis.Increased delta deactivation accompanied by strong beta activation is the main feature of depression when the depression symptom is becoming more severe.We can therefore conclude that the model developed here is acceptable for classifying depression and for scoring depressive severity.Our model can offer physicians a model that consists of topological dependency, quantified semantic depressive symptoms and clinical features by using EEG signals.These selected brain regions and significant beta frequency bands can improve the performance of the BCI system for detecting depression and scoring depressive severity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duan完成签到 ,获得积分10
1秒前
聪明怜阳发布了新的文献求助10
1秒前
王小美发布了新的文献求助10
2秒前
2秒前
zhulinkin完成签到 ,获得积分10
2秒前
4秒前
小马甲应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
了晨发布了新的文献求助10
6秒前
chenbin1105完成签到,获得积分10
6秒前
chengyulin完成签到 ,获得积分10
8秒前
12秒前
疯狂的石头完成签到,获得积分10
15秒前
虚幻初之发布了新的文献求助10
16秒前
陶醉的蜜蜂完成签到,获得积分10
17秒前
Jemma完成签到 ,获得积分10
19秒前
燕燕完成签到 ,获得积分10
19秒前
李健的小迷弟应助ZhouLin采纳,获得10
21秒前
李幺幺完成签到,获得积分20
23秒前
本恩宁完成签到 ,获得积分10
23秒前
秋雨梧桐叶落时完成签到,获得积分10
24秒前
丘比特应助肥肠的枣糕啊采纳,获得10
25秒前
27秒前
28秒前
有趣的银完成签到,获得积分10
29秒前
29秒前
Zgrey完成签到,获得积分10
29秒前
31秒前
天天快乐应助虚幻初之采纳,获得10
31秒前
阿俊完成签到 ,获得积分10
32秒前
哈哈哈发布了新的文献求助30
33秒前
36秒前
38秒前
吉如天完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576