Classifying and Scoring Major Depressive Disorders by Residual Neural Networks on Specific Frequencies and Brain Regions

脑电图 均方误差 人工智能 残余物 萧条(经济学) 重性抑郁障碍 模式识别(心理学) 频带 计算机科学 F1得分 人工神经网络 大脑活动与冥想 认知 心理学 机器学习 统计 数学 精神科 算法 计算机网络 带宽(计算) 经济 宏观经济学
作者
Kang Cheng,Daniel Novák,Xujing Yao,Jiayong Xie,Yong Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 2964-2973 被引量:4
标识
DOI:10.1109/tnsre.2023.3293051
摘要

Major Depressive Disorder (MDD) -can be evaluated by advanced neurocomputing and traditional machine learning techniques.This study aims to develop an automatic system based on a Brain-Computer Interface (BCI) to classify and score depressive patients by specific frequency bands and electrodes.In this study, two Residual Neural Networks (ResNets) based on electroencephalogram (EEG) monitoring are presented for classifying depression (classifier) and for scoring depressive severity (regression).Significant frequency bands and specific brain regions are selected to improve the performance of the ResNets.The algorithm, which is estimated by 10-fold crossvalidation, attained an average accuracy rate ranging from 0.371 to 0.571 and achieved average Root-Mean-Square Error (RMSE) from 7.25 to 8.41.After using the beta frequency band and 16 specific EEG channels, we obtained the best-classifying accuracy at 0.871 and the smallest RMSE at 2.80.It was discovered that signals extracted from the beta band are more distinctive in depression classification, and these selected channels tend to perform better on scoring depressive severity.Our study also uncovered the different brain architectural connections by relying on phase coherence analysis.Increased delta deactivation accompanied by strong beta activation is the main feature of depression when the depression symptom is becoming more severe.We can therefore conclude that the model developed here is acceptable for classifying depression and for scoring depressive severity.Our model can offer physicians a model that consists of topological dependency, quantified semantic depressive symptoms and clinical features by using EEG signals.These selected brain regions and significant beta frequency bands can improve the performance of the BCI system for detecting depression and scoring depressive severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ATYS完成签到,获得积分10
1秒前
李明涵完成签到 ,获得积分10
1秒前
2秒前
吉吉完成签到 ,获得积分10
2秒前
阿呸完成签到,获得积分10
2秒前
Matrix完成签到,获得积分10
3秒前
快乐的萝莉完成签到,获得积分10
4秒前
DOGDAD完成签到,获得积分10
4秒前
Ww完成签到,获得积分10
4秒前
沉默的不言完成签到 ,获得积分10
5秒前
樊书雪完成签到,获得积分10
5秒前
满意的芸完成签到 ,获得积分10
6秒前
共享精神应助神勇的天问采纳,获得10
6秒前
美人鱼战士完成签到 ,获得积分10
6秒前
hehe发布了新的文献求助10
6秒前
front完成签到,获得积分10
6秒前
英姑应助燕海雪采纳,获得10
6秒前
医文轩完成签到,获得积分10
7秒前
小明完成签到,获得积分10
7秒前
科研包完成签到,获得积分10
8秒前
tangzanwayne发布了新的文献求助10
8秒前
复杂的凡梦完成签到,获得积分10
9秒前
dzjin完成签到,获得积分10
11秒前
温婉完成签到,获得积分10
12秒前
孤独的迎滑完成签到,获得积分10
12秒前
三木完成签到 ,获得积分10
13秒前
Bella完成签到,获得积分10
14秒前
523完成签到,获得积分10
14秒前
小道奇完成签到 ,获得积分10
15秒前
蔬菜土豆发布了新的文献求助10
15秒前
任笑白完成签到 ,获得积分10
16秒前
Livvia完成签到,获得积分10
16秒前
Pwrry完成签到,获得积分10
17秒前
亮仔完成签到,获得积分10
18秒前
斯文的天奇完成签到 ,获得积分10
18秒前
安详的韩庆完成签到,获得积分10
18秒前
harric完成签到,获得积分10
19秒前
123456完成签到,获得积分20
19秒前
澈千子完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855