Classifying and Scoring Major Depressive Disorders by Residual Neural Networks on Specific Frequencies and Brain Regions

脑电图 均方误差 人工智能 残余物 萧条(经济学) 重性抑郁障碍 模式识别(心理学) 频带 计算机科学 F1得分 人工神经网络 大脑活动与冥想 认知 心理学 机器学习 统计 数学 精神科 算法 计算机网络 带宽(计算) 经济 宏观经济学
作者
Kang Cheng,Daniel Novák,Xujing Yao,Jiayong Xie,Yong Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 2964-2973 被引量:3
标识
DOI:10.1109/tnsre.2023.3293051
摘要

Major Depressive Disorder (MDD) -can be evaluated by advanced neurocomputing and traditional machine learning techniques.This study aims to develop an automatic system based on a Brain-Computer Interface (BCI) to classify and score depressive patients by specific frequency bands and electrodes.In this study, two Residual Neural Networks (ResNets) based on electroencephalogram (EEG) monitoring are presented for classifying depression (classifier) and for scoring depressive severity (regression).Significant frequency bands and specific brain regions are selected to improve the performance of the ResNets.The algorithm, which is estimated by 10-fold crossvalidation, attained an average accuracy rate ranging from 0.371 to 0.571 and achieved average Root-Mean-Square Error (RMSE) from 7.25 to 8.41.After using the beta frequency band and 16 specific EEG channels, we obtained the best-classifying accuracy at 0.871 and the smallest RMSE at 2.80.It was discovered that signals extracted from the beta band are more distinctive in depression classification, and these selected channels tend to perform better on scoring depressive severity.Our study also uncovered the different brain architectural connections by relying on phase coherence analysis.Increased delta deactivation accompanied by strong beta activation is the main feature of depression when the depression symptom is becoming more severe.We can therefore conclude that the model developed here is acceptable for classifying depression and for scoring depressive severity.Our model can offer physicians a model that consists of topological dependency, quantified semantic depressive symptoms and clinical features by using EEG signals.These selected brain regions and significant beta frequency bands can improve the performance of the BCI system for detecting depression and scoring depressive severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助某某.采纳,获得10
1秒前
小艾应助安详怜蕾采纳,获得10
1秒前
深夜看文献的小刘完成签到,获得积分10
2秒前
所所应助dudupig采纳,获得10
2秒前
3秒前
jsw发布了新的文献求助30
5秒前
Zephyr完成签到,获得积分20
5秒前
所所应助羊羊采纳,获得10
5秒前
5秒前
科研通AI2S应助Felix采纳,获得10
6秒前
None完成签到,获得积分10
6秒前
小费发布了新的文献求助50
6秒前
顺其自然_666888完成签到,获得积分10
7秒前
mhl11应助hey采纳,获得10
8秒前
zyy发布了新的文献求助10
8秒前
8秒前
某某.完成签到,获得积分10
9秒前
CipherSage应助guanguan采纳,获得10
9秒前
时尚的蚂蚁给时尚的蚂蚁的求助进行了留言
10秒前
我不发布了新的文献求助10
10秒前
Owen应助ash采纳,获得10
11秒前
科研通AI2S应助ying采纳,获得10
11秒前
糖糖谈糖糖完成签到,获得积分10
11秒前
Oo发布了新的文献求助10
11秒前
13秒前
开心的渊思完成签到,获得积分10
15秒前
简单枫发布了新的文献求助10
17秒前
17秒前
hey完成签到,获得积分20
18秒前
18秒前
大红豆子发布了新的文献求助10
18秒前
1234发布了新的文献求助20
19秒前
dudupig发布了新的文献求助10
19秒前
REN发布了新的文献求助30
23秒前
23秒前
研友_LXOvq8完成签到,获得积分10
23秒前
25秒前
28秒前
28秒前
Murphy_H完成签到,获得积分10
28秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327904
求助须知:如何正确求助?哪些是违规求助? 2958065
关于积分的说明 8589051
捐赠科研通 2636332
什么是DOI,文献DOI怎么找? 1442923
科研通“疑难数据库(出版商)”最低求助积分说明 668438
邀请新用户注册赠送积分活动 655568