Top-tuning on transformers and data augmentation transferring for boosting the performance of weed identification

Softmax函数 计算机科学 Boosting(机器学习) 变压器 人工智能 梯度升压 瓶颈 卷积神经网络 学习迁移 机器学习 杂草 模式识别(心理学) 随机森林 工程类 嵌入式系统 电压 农学 电气工程 生物
作者
Borja Espejo-García,Hercules Panoutsopoulos,Evangelos Anastasiou,Francisco Javier Rodríguez-Rigueiroz,Spyros Fountas
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108055-108055 被引量:1
标识
DOI:10.1016/j.compag.2023.108055
摘要

Detecting weeds at an early stage is crucial in reducing herbicide usage and preventing significant losses in agricultural productivity. The emergence of new computer vision techniques, such as transformers, presents promising opportunities for enhancing current in-field weed identification systems. Transformers, in comparison to Convolutional Neural Networks (CNNs), have demonstrated fewer biases toward textures and improved recognition of shapes, which are particularly relevant in weed identification where plant morphology is significant. In this study, two versions of Swin transformers were compared with EfficientNet-v2, a state-of-the-art CNN architecture. Weight transfer from ImageNet was employed, and data augmentation techniques from AutoAugment on the SVHN dataset were integrated into the proposed pipeline—this combination of transfer learning techniques aimed to mitigate the limitations of small agricultural datasets. The results of the large-sized Swin-v2 transformer, combined with transferred data augmentation, achieved a top-1 accuracy of 98.51% on the DeepWeeds dataset. Furthermore, a top-tuning stage was incorporated to enhance performance, reaching 98.61% accuracy. Precisely, the Softmax layer was removed, and Support Vector Machines and Gradient Boosting were trained on top of the bottleneck features. Finally, the Grad-CAM++ algorithm was utilized to compare the explanations of weed identifications before and after training. This analysis highlighted specific regions within the images that could be utilized for subsequent actions by robotic systems or other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L.发布了新的文献求助20
1秒前
Verdigris完成签到,获得积分10
2秒前
cindy完成签到,获得积分10
2秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
2秒前
金色热浪完成签到 ,获得积分10
2秒前
快去读文献完成签到,获得积分20
2秒前
斯文静曼完成签到,获得积分10
2秒前
2秒前
2秒前
拼搏思卉关注了科研通微信公众号
3秒前
3秒前
liudiqiu应助酷酷的起眸采纳,获得10
3秒前
研友_8yN60L发布了新的文献求助10
3秒前
所所应助VDC采纳,获得10
3秒前
xxq发布了新的文献求助30
3秒前
xzy发布了新的文献求助20
4秒前
Linanana完成签到,获得积分10
4秒前
4秒前
贾舒涵发布了新的文献求助10
4秒前
Sunrise完成签到,获得积分10
5秒前
HH完成签到,获得积分10
6秒前
科研通AI2S应助飞羽采纳,获得10
6秒前
风中寄云完成签到,获得积分20
6秒前
故意的傲玉应助毛慢慢采纳,获得10
6秒前
6秒前
小白发布了新的文献求助10
6秒前
7秒前
7秒前
马尼拉发布了新的文献求助10
8秒前
CodeCraft应助dildil采纳,获得10
8秒前
8秒前
cyanpomelo完成签到 ,获得积分10
9秒前
9秒前
微笑高山完成签到 ,获得积分10
9秒前
文献查找发布了新的文献求助10
9秒前
加油完成签到,获得积分20
10秒前
Sunrise发布了新的文献求助10
10秒前
tabor发布了新的文献求助10
10秒前
唐妮完成签到,获得积分10
10秒前
啵清啵完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759