Energy-Efficient UAVs Coverage Path Planning Approach

解算器 运动规划 计算机科学 能源消耗 数学优化 启发式 路径(计算) 灵活性(工程) 设置覆盖问题 模拟退火 能量(信号处理) 高效能源利用 实时计算 模拟 集合(抽象数据类型) 算法 人工智能 机器人 工程类 数学 统计 电气工程 程序设计语言
作者
Gamil Ahmed,Tarek Sheltami,Ashraf Mahmoud,Ansar-Ul-Haque Yasar
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Computers, Materials and Continua (Tech Science Press)]
卷期号:136 (3): 3239-3263 被引量:9
标识
DOI:10.32604/cmes.2023.022860
摘要

Unmanned aerial vehicles (UAVs), commonly known as drones, have drawn significant consideration thanks to their agility, mobility, and flexibility features. They play a crucial role in modern reconnaissance, inspection, intelligence, and surveillance missions. Coverage path planning (CPP) which is one of the crucial aspects that determines an intelligent system's quality seeks an optimal trajectory to fully cover the region of interest (ROI). However, the flight time of the UAV is limited due to a battery limitation and may not cover the whole region, especially in large region. Therefore, energy consumption is one of the most challenging issues that need to be optimized. In this paper, we propose an energy-efficient coverage path planning algorithm to solve the CPP problem. The objective is to generate a collision-free coverage path that minimizes the overall energy consumption and guarantees covering the whole region. To do so, the flight path is optimized and the number of turns is reduced to minimize the energy consumption. The proposed approach first decomposes the ROI into a set of cells depending on a UAV camera footprint. Then, the coverage path planning problem is formulated, where the exact solution is determined using the CPLEX solver. For small-scale problems, the CPLEX shows a better solution in a reasonable time. However, the CPLEX solver fails to generate the solution within a reasonable time for large-scale problems. Thus, to solve the model for large-scale problems, simulated annealing for CPP is developed. The results show that heuristic approaches yield a better solution for large-scale problems within a much shorter execution time than the CPLEX solver. Finally, we compare the simulated annealing against the greedy algorithm. The results show that simulated annealing outperforms the greedy algorithm in generating better solution quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zxyvv完成签到,获得积分10
2秒前
addment发布了新的文献求助100
3秒前
4秒前
机灵笑珊给机灵笑珊的求助进行了留言
4秒前
6秒前
yi完成签到 ,获得积分10
6秒前
All发布了新的文献求助10
6秒前
科目三应助欢呼雁采纳,获得10
7秒前
Zxyvv发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
小马甲应助zzw采纳,获得30
10秒前
10秒前
11秒前
11秒前
科研通AI2S应助sys采纳,获得30
11秒前
土星发布了新的文献求助10
12秒前
寻道图强应助feitachi采纳,获得30
12秒前
12秒前
北执发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
酷波er应助林月采纳,获得10
14秒前
传奇3应助茵茵采纳,获得10
15秒前
科研民工发布了新的文献求助10
16秒前
Oscar发布了新的文献求助10
16秒前
chenyunxia完成签到 ,获得积分10
16秒前
123发布了新的文献求助10
16秒前
16秒前
16秒前
18秒前
Li发布了新的文献求助10
18秒前
18秒前
19秒前
欢呼雁发布了新的文献求助10
19秒前
jwhardaway发布了新的文献求助10
20秒前
上官若男应助安天祈采纳,获得30
23秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163867
求助须知:如何正确求助?哪些是违规求助? 2814732
关于积分的说明 7906373
捐赠科研通 2474319
什么是DOI,文献DOI怎么找? 1317432
科研通“疑难数据库(出版商)”最低求助积分说明 631757
版权声明 602198