A Novel Melspectrogram Snippet Representation Learning Framework for Severity Detection of Chronic Obstructive Pulmonary Diseases

慢性阻塞性肺病 分类器(UML) 人工智能 代码段 计算机科学 二元分类 机器学习 肺病 深度学习 医学 模式识别(心理学) 支持向量机 内科学 程序设计语言
作者
Arka Roy,Udit Satija
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:14
标识
DOI:10.1109/tim.2023.3256468
摘要

Chronic obstructive pulmonary disease (COPD) is a major public health concern across the world. Since it is an incurable disease, early detection, and accurate diagnosis are very crucial for preventing the progression of the disease. Lung sounds provide reliable and accurate prognoses for identifying respiratory diseases. Recently, Altan et al. recorded 12-channel real-time lung sound dataset, namely RespiratoryDatabase@TR, for five different severity levels of COPD at Antakya State Hospital Turkey, and proposed deep learning frameworks for two-class COPD classification and five-class classification using a deep belief network (DBN) classifier and extreme learning machine (ELM) classifier respectively. A classification accuracy of 95.84% and 94.31% were achieved for two-class and five-class, respectively. In this paper, we have proposed a melspectrogram snippet representation learning framework for both two-class and five-class COPD classification. The proposed framework consists of the following stages: data augmentation and pre-processing, melspectrogram snippet representation generation from lung sound, and fine-tuning of a pre-trained YAMNet. Experimental analysis on the RespiratoryDatabase@TR dataset demonstrates that the proposed framework achieves accuracies of 99.25% and 96.14% for binary and multi-class COPD severity classification, respectively, which are superior to the only existing methods proposed by Altan et al. for severity analysis of COPD using lung sounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
3秒前
hah发布了新的文献求助10
4秒前
4秒前
6秒前
kayee发布了新的文献求助10
7秒前
长大水果完成签到,获得积分10
7秒前
科研通AI2S应助燕子采纳,获得10
8秒前
bkagyin应助hc采纳,获得10
8秒前
rr完成签到 ,获得积分20
10秒前
江小白发布了新的文献求助10
10秒前
anwen发布了新的文献求助100
12秒前
小胡先森完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
喊我彩彩完成签到,获得积分10
19秒前
唐唐完成签到 ,获得积分10
20秒前
20秒前
..完成签到 ,获得积分10
20秒前
江南完成签到,获得积分10
21秒前
人人有责完成签到,获得积分10
21秒前
22秒前
biekanwo完成签到,获得积分10
22秒前
22秒前
在水一方应助hah采纳,获得10
23秒前
24秒前
24秒前
zy发布了新的文献求助10
24秒前
24秒前
26秒前
小木虫完成签到,获得积分10
26秒前
领导范儿应助化学先生采纳,获得10
27秒前
燕子完成签到,获得积分10
27秒前
28秒前
29秒前
29秒前
小白完成签到,获得积分10
31秒前
zzzkyt发布了新的文献求助10
31秒前
32秒前
沉静傲白发布了新的文献求助10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358577
求助须知:如何正确求助?哪些是违规求助? 2981729
关于积分的说明 8700341
捐赠科研通 2663366
什么是DOI,文献DOI怎么找? 1458452
科研通“疑难数据库(出版商)”最低求助积分说明 675112
邀请新用户注册赠送积分活动 666149