Whole slide image‐based prediction of lymph node metastasis in T1 colorectal cancer using unsupervised artificial intelligence

医学 接收机工作特性 置信区间 结直肠癌 队列 人工智能 回顾性队列研究 淋巴结 淋巴结转移 转移 癌症 机器学习 内科学 肿瘤科 放射科 计算机科学
作者
Yuki Takashina,Shin‐ei Kudo,Yuta Kouyama,Katsuro Ichimasa,Hideyuki Miyachi,Yuichi Mori,Toyoki Kudo,Yasuharu Maeda,Yushi Ogawa,Takemasa Hayashi,Kunihiko Wakamura,Yuta Enami,Naruhiko Sawada,Toshiyuki Baba,Tetsuo Nemoto,Fumio Ishida,Masashi Misawa
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:35 (7): 902-908 被引量:13
标识
DOI:10.1111/den.14547
摘要

Lymph node metastasis (LNM) prediction for T1 colorectal cancer (CRC) is critical for determining the need for surgery after endoscopic resection because LNM occurs in 10%. We aimed to develop a novel artificial intelligence (AI) system using whole slide images (WSIs) to predict LNM.We conducted a retrospective single center study. To train and test the AI model, we included LNM status-confirmed T1 and T2 CRC between April 2001 and October 2021. These lesions were divided into two cohorts: training (T1 and T2) and testing (T1). WSIs were cropped into small patches and clustered by unsupervised K-means. The percentage of patches belonging to each cluster was calculated from each WSI. Each cluster's percentage, sex, and tumor location were extracted and learned using the random forest algorithm. We calculated the areas under the receiver operating characteristic curves (AUCs) to identify the LNM and the rate of over-surgery of the AI model and the guidelines.The training cohort contained 217 T1 and 268 T2 CRCs, while 100 T1 cases (LNM-positivity 15%) were the test cohort. The AUC of the AI system for the test cohort was 0.74 (95% confidence interval [CI] 0.58-0.86), and 0.52 (95% CI 0.50-0.55) using the guidelines criteria (P = 0.0028). This AI model could reduce the 21% of over-surgery compared to the guidelines.We developed a pathologist-independent predictive model for LNM in T1 CRC using WSI for determination of the need for surgery after endoscopic resection.UMIN Clinical Trials Registry (UMIN000046992, https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000053590).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Lu采纳,获得10
刚刚
王甜甜完成签到,获得积分20
刚刚
在公园养猪完成签到,获得积分10
刚刚
乐乐应助眯眯眼的世界采纳,获得10
1秒前
高大雁兰发布了新的文献求助10
1秒前
民民哥完成签到,获得积分10
1秒前
1秒前
尊敬的马里奥完成签到,获得积分10
1秒前
2秒前
2秒前
RJH完成签到 ,获得积分10
2秒前
3秒前
toto完成签到 ,获得积分10
3秒前
QIHBY完成签到,获得积分10
3秒前
吴欣欣发布了新的文献求助10
4秒前
4秒前
逆风飞扬完成签到,获得积分10
5秒前
5秒前
完美世界应助安静凡旋采纳,获得10
5秒前
kingwill应助lyh采纳,获得20
6秒前
右右发布了新的文献求助10
6秒前
whl完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助王甜甜采纳,获得10
7秒前
小酒窝周周完成签到 ,获得积分10
7秒前
QIHBY发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
ma完成签到,获得积分10
9秒前
10秒前
10秒前
二橦完成签到,获得积分10
10秒前
小马甲应助0美团外卖0采纳,获得10
10秒前
开胃咖喱完成签到,获得积分10
10秒前
11秒前
顾化蛹发布了新的文献求助10
11秒前
完美世界应助朱先生采纳,获得10
11秒前
高高发布了新的文献求助10
11秒前
忆之发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560850
求助须知:如何正确求助?哪些是违规求助? 3134690
关于积分的说明 9408852
捐赠科研通 2834921
什么是DOI,文献DOI怎么找? 1558291
邀请新用户注册赠送积分活动 728047
科研通“疑难数据库(出版商)”最低求助积分说明 716678