A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZONG发布了新的文献求助10
刚刚
刚刚
含氢完成签到,获得积分10
刚刚
StandardR发布了新的文献求助30
1秒前
Carey发布了新的文献求助10
1秒前
surou完成签到,获得积分10
1秒前
田様应助MY采纳,获得20
2秒前
3秒前
4秒前
4秒前
qh发布了新的文献求助10
4秒前
5秒前
小白完成签到,获得积分10
5秒前
在水一方应助好奇宝宝采纳,获得10
5秒前
5秒前
min完成签到 ,获得积分10
5秒前
细心无声发布了新的文献求助10
6秒前
找文献啊找文献完成签到,获得积分10
6秒前
不配.应助噗噗采纳,获得20
6秒前
7秒前
8秒前
weiyanhui发布了新的文献求助10
8秒前
XIAOTONGTONG发布了新的文献求助30
8秒前
ttt完成签到,获得积分10
9秒前
锌迹完成签到,获得积分20
9秒前
10秒前
maox1aoxin应助水云间采纳,获得50
10秒前
窦房结完成签到 ,获得积分10
10秒前
锌迹发布了新的文献求助10
12秒前
MY完成签到,获得积分10
12秒前
鹏笑完成签到,获得积分10
12秒前
cwq921发布了新的文献求助10
13秒前
13秒前
sadasd完成签到,获得积分10
14秒前
熊大哥完成签到,获得积分10
14秒前
柚子发布了新的文献求助10
14秒前
MY发布了新的文献求助20
15秒前
15秒前
ok123完成签到 ,获得积分10
15秒前
小二郎应助Gleast采纳,获得10
15秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328859
求助须知:如何正确求助?哪些是违规求助? 2958888
关于积分的说明 8592605
捐赠科研通 2637298
什么是DOI,文献DOI怎么找? 1443433
科研通“疑难数据库(出版商)”最低求助积分说明 668699
邀请新用户注册赠送积分活动 656039