亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zhang完成签到,获得积分10
12秒前
非洲大象完成签到,获得积分10
38秒前
41秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
烟花应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
无限暖暖发布了新的文献求助10
46秒前
1分钟前
hh完成签到,获得积分10
1分钟前
JIANHUAN完成签到 ,获得积分10
1分钟前
泥娃娃完成签到,获得积分10
1分钟前
蔚欢完成签到 ,获得积分10
1分钟前
CJH104完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
xm完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得20
2分钟前
2分钟前
2分钟前
TingtingGZ发布了新的文献求助10
2分钟前
zhjl完成签到,获得积分10
3分钟前
Li_KK完成签到,获得积分10
3分钟前
3分钟前
快叫豆哥发布了新的文献求助10
3分钟前
土壤情缘完成签到,获得积分10
3分钟前
神外王001完成签到 ,获得积分10
3分钟前
4分钟前
Qinghua完成签到,获得积分10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
人双山几文完成签到 ,获得积分10
4分钟前
今天烤可颂了嘛完成签到 ,获得积分10
5分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502902
求助须知:如何正确求助?哪些是违规求助? 4598594
关于积分的说明 14464661
捐赠科研通 4532215
什么是DOI,文献DOI怎么找? 2483863
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439745