A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助jiawei1026采纳,获得10
刚刚
贰壹发布了新的文献求助10
1秒前
赛赛发布了新的文献求助10
1秒前
朱朱朱发布了新的文献求助10
2秒前
3秒前
5秒前
赛赛完成签到,获得积分10
6秒前
milly发布了新的文献求助10
6秒前
7秒前
OnlyHarbour发布了新的文献求助10
7秒前
8秒前
囧囧应助可爱邓邓采纳,获得50
9秒前
xyg发布了新的文献求助10
10秒前
10秒前
PengqianGuo完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
英俊的铭应助aurora采纳,获得10
13秒前
htzz发布了新的文献求助10
14秒前
qizhia完成签到,获得积分10
14秒前
Akim应助SIDEsss采纳,获得10
15秒前
斯文败类应助seven采纳,获得10
15秒前
伶俐的亦玉完成签到,获得积分10
16秒前
qizhia发布了新的文献求助10
17秒前
Dobrzs发布了新的文献求助30
17秒前
xylinwc发布了新的文献求助10
18秒前
Yuting完成签到,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
Hilda007应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI6应助dddhzzz采纳,获得30
21秒前
浮游应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627161
求助须知:如何正确求助?哪些是违规求助? 4713090
关于积分的说明 14961386
捐赠科研通 4783800
什么是DOI,文献DOI怎么找? 2554728
邀请新用户注册赠送积分活动 1516296
关于科研通互助平台的介绍 1476641