A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于是完成签到,获得积分10
2秒前
2秒前
务实觅松完成签到 ,获得积分10
2秒前
shower_009完成签到,获得积分10
4秒前
潘继坤完成签到,获得积分10
4秒前
小满完成签到,获得积分10
4秒前
幽灵完成签到,获得积分20
5秒前
迷路海蓝完成签到,获得积分10
5秒前
transition完成签到,获得积分10
5秒前
5秒前
5秒前
Jasper应助甜甜匪采纳,获得10
6秒前
6秒前
淀粉发布了新的文献求助10
6秒前
FleeToMars完成签到 ,获得积分10
7秒前
小子发布了新的文献求助10
7秒前
cc应助听雨眠采纳,获得40
7秒前
忧伤的鬼神完成签到 ,获得积分10
8秒前
bkagyin应助心灵美孤菱采纳,获得10
8秒前
Crystal完成签到,获得积分10
8秒前
眼睛大的乐儿完成签到,获得积分10
8秒前
8秒前
SYLH应助温柔体贴阿尔法采纳,获得10
9秒前
开门啊菇凉完成签到,获得积分0
9秒前
龙龙ff11_发布了新的文献求助10
10秒前
泥鳅面完成签到,获得积分10
11秒前
GreenT完成签到,获得积分10
11秒前
大力的谷雪完成签到,获得积分10
12秒前
小子完成签到,获得积分10
13秒前
SciGPT应助Crystal采纳,获得10
13秒前
朵拉完成签到,获得积分10
14秒前
14秒前
一介书生完成签到,获得积分10
15秒前
要开心完成签到,获得积分10
15秒前
弱水三千完成签到,获得积分10
15秒前
冉亦完成签到,获得积分10
16秒前
想毕业的小橙子完成签到,获得积分10
16秒前
16秒前
CipherSage应助努力的学采纳,获得10
16秒前
小柒完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478