A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miss发布了新的文献求助10
1秒前
大媛大靳吃地瓜完成签到,获得积分10
1秒前
哈基米发布了新的文献求助10
1秒前
微笑芒果完成签到 ,获得积分0
2秒前
陈乃雪完成签到,获得积分20
2秒前
坚强的契完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
小远远完成签到,获得积分10
3秒前
艾席文完成签到,获得积分10
4秒前
衫楠如画完成签到,获得积分10
4秒前
乙醇发布了新的文献求助10
4秒前
5秒前
6秒前
陈乃雪发布了新的文献求助10
6秒前
李爱国应助miss采纳,获得10
6秒前
Lucas应助萝卜青菜采纳,获得10
6秒前
7秒前
zhang568完成签到 ,获得积分10
8秒前
干净绮烟发布了新的文献求助10
9秒前
科瑞斯王完成签到 ,获得积分10
9秒前
10秒前
淡淡菠萝完成签到 ,获得积分10
10秒前
11秒前
11秒前
端庄煎饼完成签到,获得积分10
12秒前
无花果应助萝卜青菜采纳,获得10
12秒前
H与K完成签到,获得积分10
12秒前
汉堡包应助坚强的契采纳,获得10
13秒前
猫猫叫cat完成签到,获得积分10
13秒前
13秒前
Zhangqiuyu完成签到 ,获得积分10
13秒前
清淮发布了新的文献求助10
13秒前
沉默的谷秋完成签到,获得积分10
13秒前
cjmlslddjd完成签到,获得积分10
14秒前
JIinghong发布了新的文献求助10
16秒前
CC发布了新的文献求助10
16秒前
大宝完成签到,获得积分10
17秒前
上官若男应助xulu1031采纳,获得10
17秒前
QSJ完成签到,获得积分10
17秒前
欣喜依白发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424645
求助须知:如何正确求助?哪些是违规求助? 4538996
关于积分的说明 14164586
捐赠科研通 4455962
什么是DOI,文献DOI怎么找? 2444024
邀请新用户注册赠送积分活动 1435084
关于科研通互助平台的介绍 1412452