A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shine完成签到 ,获得积分10
刚刚
刚刚
刚刚
静水流深发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
BlogY发布了新的文献求助10
3秒前
XH完成签到,获得积分10
4秒前
科研大捞发布了新的文献求助10
4秒前
老实易蓉发布了新的文献求助10
4秒前
科研通AI6.1应助shero采纳,获得10
4秒前
个性的长颈鹿完成签到,获得积分10
4秒前
4秒前
5秒前
隐形曼青应助嘟嘟采纳,获得10
6秒前
切尔顿发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助xionggege采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
小厮完成签到,获得积分10
7秒前
7秒前
姚老表发布了新的文献求助50
7秒前
穆然发布了新的文献求助10
7秒前
斯文败类应助Ashley采纳,获得10
7秒前
7秒前
7秒前
8秒前
FashionBoy应助BlogY采纳,获得10
8秒前
8秒前
chuze完成签到,获得积分10
10秒前
fan发布了新的文献求助10
10秒前
小鱼儿发布了新的文献求助10
11秒前
12秒前
aaa发布了新的文献求助10
13秒前
smottom应助xinlei2023采纳,获得10
13秒前
14秒前
无极微光应助加菲丰丰采纳,获得20
15秒前
领导范儿应助KUIWU采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760818
求助须知:如何正确求助?哪些是违规求助? 5526191
关于积分的说明 15398334
捐赠科研通 4897505
什么是DOI,文献DOI怎么找? 2634199
邀请新用户注册赠送积分活动 1582335
关于科研通互助平台的介绍 1537676