A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
蓝天发布了新的文献求助10
1秒前
111发布了新的文献求助10
2秒前
整个好活完成签到,获得积分10
2秒前
hh发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
kk完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
悦耳听芹完成签到 ,获得积分10
3秒前
爱撒娇的冰安完成签到,获得积分10
4秒前
4秒前
4秒前
cinnamonbrd完成签到,获得积分10
4秒前
科研通AI6.1应助zyyyyyy采纳,获得10
5秒前
5秒前
顾矜应助dvd采纳,获得10
6秒前
活力书包完成签到 ,获得积分10
6秒前
7秒前
阿尔辛多完成签到,获得积分10
7秒前
7秒前
欢呼黑猫应助liuyafei采纳,获得10
8秒前
烟花应助111采纳,获得10
9秒前
10秒前
土木研学僧完成签到,获得积分10
10秒前
10秒前
xiaoT发布了新的文献求助10
10秒前
专注的曼寒完成签到 ,获得积分10
11秒前
11秒前
sunmiao完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
微毒麻醉完成签到,获得积分10
13秒前
ljy1111发布了新的文献求助10
13秒前
Cyuan发布了新的文献求助10
13秒前
方方发布了新的文献求助10
13秒前
13秒前
曹定发布了新的文献求助10
14秒前
AliceCute发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082