A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
678邹发布了新的文献求助10
刚刚
廖怡星发布了新的文献求助10
2秒前
3秒前
Ulysses完成签到,获得积分10
3秒前
桐桐应助一修采纳,获得10
3秒前
liuhua完成签到,获得积分20
3秒前
3秒前
后笑晴完成签到,获得积分10
4秒前
4秒前
沙糖桔发布了新的文献求助10
5秒前
5秒前
淡淡从阳发布了新的文献求助20
7秒前
7秒前
缓慢的凝安完成签到 ,获得积分10
7秒前
8秒前
风淡了发布了新的文献求助10
8秒前
8秒前
bibi发布了新的文献求助10
8秒前
JTB发布了新的文献求助10
9秒前
小李发布了新的文献求助10
10秒前
超好运应助li采纳,获得10
11秒前
11秒前
爆米花应助sky采纳,获得10
12秒前
无糖零脂发布了新的文献求助10
12秒前
13秒前
平淡依玉发布了新的文献求助10
13秒前
方远锋发布了新的文献求助10
13秒前
14秒前
14秒前
希望天下0贩的0应助可可采纳,获得10
15秒前
姚盈盈发布了新的文献求助10
15秒前
LEL发布了新的文献求助10
15秒前
好有气质饭完成签到,获得积分20
16秒前
乘风的法袍完成签到,获得积分10
16秒前
精明手机完成签到,获得积分10
18秒前
成就凡双应助msd2phd采纳,获得10
18秒前
满满给满满的求助进行了留言
18秒前
科研通AI6应助678邹采纳,获得10
18秒前
脑洞疼应助yxy采纳,获得10
20秒前
cenghao发布了新的文献求助40
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578485
求助须知:如何正确求助?哪些是违规求助? 4663329
关于积分的说明 14746065
捐赠科研通 4604137
什么是DOI,文献DOI怎么找? 2526852
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465760