A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助不散的和弦采纳,获得10
刚刚
吕士晋完成签到,获得积分20
1秒前
2秒前
烟花应助简单的冬灵采纳,获得10
3秒前
解丽发布了新的文献求助10
3秒前
blur完成签到,获得积分10
5秒前
石奥绅完成签到,获得积分20
5秒前
bkagyin应助yyy采纳,获得10
6秒前
852应助JLLLLLLLL采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Swii完成签到,获得积分10
9秒前
曹毅凯完成签到,获得积分10
9秒前
10秒前
zrl完成签到,获得积分20
10秒前
研友-wbg-LjbQIL完成签到 ,获得积分10
11秒前
哈哈完成签到 ,获得积分10
11秒前
12秒前
研友_Z6k5Q8完成签到 ,获得积分10
13秒前
zjy发布了新的文献求助10
14秒前
14秒前
14秒前
Inuit发布了新的文献求助10
15秒前
15秒前
16秒前
bkagyin应助WangYZ采纳,获得10
17秒前
自然的方盒完成签到,获得积分20
17秒前
Joni发布了新的文献求助10
17秒前
18秒前
yyy发布了新的文献求助10
18秒前
拉总发布了新的文献求助30
18秒前
18秒前
科学家发布了新的文献求助10
18秒前
19秒前
闪闪乘风发布了新的文献求助10
20秒前
小紫完成签到 ,获得积分10
20秒前
科研通AI6应助lyy采纳,获得10
20秒前
21秒前
Lonnie完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858