A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 操作系统 网络数据包 数据库
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangmanli发布了新的文献求助10
刚刚
核桃发布了新的文献求助10
1秒前
科研通AI6应助Qqqq采纳,获得30
1秒前
1秒前
咕咕发布了新的文献求助10
1秒前
2秒前
dhh发布了新的文献求助30
2秒前
linglingling完成签到 ,获得积分10
3秒前
跬步一积完成签到,获得积分10
3秒前
无名花生发布了新的文献求助10
3秒前
4秒前
脑洞疼应助震动的幻柏采纳,获得30
4秒前
嘤嘤发布了新的文献求助10
4秒前
共享精神应助自然的千青采纳,获得10
5秒前
5秒前
11111发布了新的文献求助10
5秒前
6秒前
Xgg发布了新的文献求助20
6秒前
7秒前
ttt发布了新的文献求助10
7秒前
wtian完成签到,获得积分10
7秒前
打打应助玉yu采纳,获得10
7秒前
华仔应助bzzx采纳,获得10
7秒前
9秒前
insane发布了新的文献求助10
9秒前
旺旺小面包完成签到 ,获得积分10
9秒前
缓慢咖啡完成签到,获得积分10
10秒前
10秒前
快乐的故事完成签到,获得积分10
10秒前
爆米花应助AHR采纳,获得10
12秒前
12秒前
慕青应助AHR采纳,获得10
12秒前
华仔应助AHR采纳,获得10
12秒前
深情安青应助AHR采纳,获得10
12秒前
12秒前
pipi发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960895
求助须知:如何正确求助?哪些是违规求助? 4221348
关于积分的说明 13146580
捐赠科研通 4005074
什么是DOI,文献DOI怎么找? 2191860
邀请新用户注册赠送积分活动 1205932
关于科研通互助平台的介绍 1116970