亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System

计算机科学 交通拥挤 网络拥塞 备份 计算机网络 架空(工程) 智能交通系统 基于Kerner三相理论的交通拥堵重构 聚类分析 网络流量控制 实时计算 模拟 运输工程 工程类 人工智能 数据库 网络数据包 操作系统
作者
Weilong Zhu,Chunsheng Zhu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12763-12776 被引量:2
标识
DOI:10.1109/jiot.2023.3255200
摘要

For the application of intelligent and green transportation systems (e.g., autonomous driving), traffic congestion is a severe challenge. So far, when traffic congestion is perceived for a route, a common solution is searching for another congestion-free route. However, it is observed that not all congestion should be tackled with rerouting since the extra overhead (e.g., travel time, fuel consumption, and CO2 emission) caused by specific congestion might be lower than that of rerouting. Against this backdrop, a prediction-based route guidance method (PRGM) is proposed for intelligent and green transportation systems. To begin with, PRGM involves a novel hybrid and dynamic system architecture based on the collaboration of vehicle clusters and the cloud platform. Notably, a backup mechanism between adjacent cluster heads is designed to avoid the problem that the data might be lost during dynamic clustering. Furthermore, PRGM involves a novel traffic congestion control strategy, which is based on four procedures: 1) perception about traffic congestion with three indexes (i.e., speed index, dense index, and acceleration index); 2) judgment about congestion type with four defined congestion types; 3) prediction about congestion duration considering the formation of congestion (i.e., why and how the congestion is formed); and 4) route planning about vehicles considering congestion duration and the extra time overhead of rerouting. Simulations are performed, and they show that the proposed PRGM not only can perceive traffic congestion more precisely and timely but also can reduce the travel time, fuel consumption, and CO2 emission of vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clio完成签到,获得积分10
刚刚
1秒前
Boffican发布了新的文献求助10
4秒前
4秒前
坚守发布了新的文献求助10
5秒前
7秒前
啊哦发布了新的文献求助30
8秒前
9秒前
zhdhh发布了新的文献求助10
9秒前
D1fficulty完成签到,获得积分0
10秒前
iCorn完成签到,获得积分10
10秒前
影月完成签到,获得积分10
11秒前
Freedom完成签到 ,获得积分10
12秒前
13秒前
13秒前
黄黄黄完成签到 ,获得积分20
19秒前
乐观的非笑完成签到,获得积分10
23秒前
27秒前
27秒前
乐乐应助坚守采纳,获得10
28秒前
科研通AI6应助zhdhh采纳,获得10
29秒前
信陵君无忌完成签到,获得积分10
29秒前
li发布了新的文献求助10
32秒前
领导范儿应助哦噢藕采纳,获得10
34秒前
樱桃汽水怪兽完成签到,获得积分10
35秒前
li完成签到,获得积分10
38秒前
张张完成签到,获得积分10
38秒前
42秒前
哦噢藕完成签到,获得积分10
44秒前
46秒前
明理的蜗牛完成签到,获得积分10
46秒前
CJY发布了新的文献求助10
47秒前
小马甲应助科研通管家采纳,获得10
50秒前
优雅的大白菜完成签到 ,获得积分10
52秒前
桐桐应助少年啊采纳,获得10
54秒前
老北京完成签到,获得积分10
56秒前
58秒前
koi完成签到,获得积分20
59秒前
1分钟前
阿朱完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264